

CCTTAA SSppeecciiffiiccaattiioonn

WWaavvee AApppplliiccaattiioonn VViiddeeoo EEccoossyysstteemm –– DDeevviiccee
PPllaayybbaacckk CCaappaabbiilliittiieess

CCTTAA--55000033

DDeecceemmbbeerr 22001188

NOTICE

Consumer Technology Association (CTA)™ Standards, Bulletins and other technical publications
are designed to serve the public interest through eliminating misunderstandings between
manufacturers and purchasers, facilitating interchangeability and improvement of products, and
assisting the purchaser in selecting and obtaining with minimum delay the proper product for his
particular need. Existence of such Standards, Bulletins and other technical publications shall not
in any respect preclude any member or nonmember of the Consumer Technology Association from
manufacturing or selling products not conforming to such Standards, Bulletins or other technical
publications, nor shall the existence of such Standards, Bulletins and other technical publications
preclude their voluntary use by those other than Consumer Technology Association members,
whether the standard is to be used either domestically or internationally.

Standards, Bulletins and other technical publications are adopted by the Consumer Technology
Association in accordance with the American National Standards Institute (ANSI) patent policy.
By such action, the Consumer Technology Association does not assume any liability to any patent
owner, nor does it assume any obligation whatever to parties adopting the Standard, Bulletin or
other technical publication.

This document does not purport to address all safety problems associated with its use or all
applicable regulatory requirements. It is the responsibility of the user of this document to establish
appropriate safety and health practices and to determine the applicability of regulatory limitations
before its use.

Copyright © 2018 by the Consumer Technology Association (CTA)™ and the World Wide Web
Consortium (W3C). All rights reserved. This document may not be reproduced, in whole or part,
without written permission. Federal copyright law prohibits unauthorized reproduction of this
document by any means. Organizations may obtain permission to reproduce a limited number of
copies by entering into a license agreement. Requests to reproduce text, data, charts, figures or
other material should be made to the Consumer Technology Association (CTA)™ or the W3C.

(Formulated under the cognizance of the CTA WAVE Project in cooperation with the W3C; for
information please see cta.tech/WAVE.)

 Published by
 CONSUMER TECHNOLOGY ASSOCIATION
 Technology & Standards Department
 www.cta.tech

 All rights reserved

i

Table of Contents
1 Scope ... 1
2 References ... 1

2.1 Normative References .. 1
2.2 Informative References .. 1

3 Document Notation and Conventions ... 2
4 Acronyms ... 3
5 Architecture and WAVE Device Reference Model .. 4

5.1 WAVE Architecture ... 4
5.2 WAVE Device Playback Reference Model .. 5

5.2.1 Overview ... 5
5.2.2 Wave Device Platform APIs ... 8
5.2.3 Web Media API-based Playback Model .. 9

5.3 WAVE Content .. 9
5.3.1 Overview ... 9
5.3.2 CMAF Content Model ... 10
5.3.3 WAVE Content Model ... 13
5.3.4 Content Model Format ... 14

5.4 Scope of This Specification ... 15
5.4.1 Introduction .. 15
5.4.2 Conformance Aspects and Interoperability .. 15
5.4.3 Tests, Performance and Performance Requirements .. 16
5.4.4 Existing and New Devices ... 16

6 Media Playback Model .. 16
6.1 Introduction .. 16
6.2 Media Element and Source Establishment .. 17

6.2.1 General .. 17
6.2.2 Web Media API-based Media Element and Source Establishment 17

6.3 Media Element and Media Source Control .. 18
6.3.1 General .. 18
6.3.2 Web Media API-based Media Element and Media Source Control 18

6.4 Device Capability .. 18
6.4.1 General .. 18
6.4.2 Web Media API-based Capability Discovery ... 19

6.5 Source Buffer Management ... 20
6.5.1 General .. 20
6.5.2 Web Media API-based Source Buffer Management ... 21

6.6 Device Playback Model for a Single Source Buffer .. 21

ii

6.6.1 Introduction .. 21
6.6.2 General .. 22
6.6.3 Web Media API-based Playback ... 24

6.7 Device Playback Model for a Media Element .. 24
6.7.1 General .. 24
6.7.2 Web Media API-based Playback ... 24

7 DRM Protected Media ... 25
7.1 Introduction .. 25
7.2 Media Profiles and Encryption Schemes .. 26

7.2.1 Introduction .. 26
7.2.2 License Acquisition using the EME API ... 27

8 Single-Track Media Playback Requirements ... 28
8.1 Introduction and Content Model ... 28
8.2 Sequential Track Playback .. 28

8.2.1 Background ... 28
8.2.2 Pre-condition .. 28
8.2.3 Parameters and Variants .. 28
8.2.4 Stimulus ... 29
8.2.5 Required Observation ... 29

8.3 Random Access to Fragment .. 30
8.3.1 Background ... 30
8.3.2 Pre-condition .. 30
8.3.3 Parameters and Variants .. 30
8.3.4 Stimulus ... 30
8.3.5 Required Observation ... 31

8.4 Random Access to Time ... 32
8.4.1 Background ... 32
8.4.2 Pre-condition .. 32
8.4.3 Parameters and Variants .. 32
8.4.4 Stimulus ... 32
8.4.5 Required Observation ... 33

8.5 Switching Set Playback ... 34
8.5.1 Background ... 34
8.5.2 Pre-Conditions .. 34
8.5.3 Parameters and Variants .. 34
8.5.4 Stimulus ... 34
8.5.5 Required Observation ... 35

8.6 Regular Playback of Chunked Content ... 36
8.6.1 Background ... 36

iii

8.6.2 Pre-condition .. 36
8.6.3 Parameters and Variants .. 36
8.6.4 Stimulus ... 36
8.6.5 Required Observation ... 37

8.7 Regular Playback of Chunked Content, non-aligned append .. 38
8.7.1 Background ... 38
8.7.2 Pre-condition .. 38
8.7.3 Parameters and Variants .. 38
8.7.4 Stimulus ... 38
8.7.5 Required Observation ... 39

8.8 Playback over WAVE Baseline Splice Constraints .. 40
8.8.1 Background ... 40
8.8.2 Pre-conditions ... 40
8.8.3 Parameters and Variants .. 40
8.8.4 Stimulus ... 40
8.8.5 Required Observations ... 41

8.9 Out-Of-Order Loading .. 42
8.9.1 Background ... 42
8.9.2 Pre-condition .. 42
8.9.3 Parameters and Variants .. 42
8.9.4 Stimulus ... 42
8.9.5 Required Observation ... 43

8.10 Overlapping Fragments .. 44
8.10.1 Background ... 44
8.10.2 Pre-condition .. 44
8.10.3 Parameters and Variants .. 44
8.10.4 Stimulus ... 44
8.10.5 Required Observation ... 45

8.11 Full Screen Playback of Switching Sets ... 46
8.11.1 Background ... 46
8.11.2 Pre-conditions ... 46
8.11.3 Parameters and Variants .. 46
8.11.4 Stimulus ... 46
8.11.5 Required Observations ... 46

8.12 Playback of Encrypted Content .. 47
8.12.1 Introduction .. 47
8.12.2 Encrypted Content Use Cases ... 47
8.12.3 Test Pre-condition ... 49
8.12.4 Parameters and Variants .. 50

iv

8.12.5 Stimulus ... 50
8.12.6 Expected Observation ... 50

8.13 Restricted Splicing of Encrypted Content .. 51
8.13.1 Conditions ... 51
8.13.2 Stimulus and Observation ... 51

8.14 Sequential Playback of Encrypted and Non-Encrypted Baseline Content 51
8.14.1 Conditions ... 51
8.14.2 Stimulus and Observation ... 52

8.15 Source Buffer Re-Initialization ... 52
8.16 Playback Other than Real Time .. 52

8.16.1 Background ... 52
8.17 Buffer Underrun and Recovery .. 53

8.17.1 Background ... 53
8.18 Truncated Playback and Restart .. 53

8.18.1 Background ... 53
8.19 Long Duration Playback .. 53

8.19.1 Background ... 53
8.20 Event Message Processing ... 53

9 WAVE Content Playback Requirements .. 53
9.1 Introduction .. 53
9.2 Regular Playback of a CMAF Presentation ... 54

9.2.1 Background ... 54
9.2.2 Pre-condition .. 54
9.2.3 Parameters and Variants .. 54
9.2.4 Stimulus ... 54
9.2.5 Expected Observation ... 54

9.3 Random Access of a WAVE Presentation ... 55
9.3.1 Background ... 55
9.3.2 Pre-condition .. 55
9.3.3 Parameters and Variants .. 55
9.3.4 Stimulus ... 55
9.3.5 Expected Observation ... 56

9.4 Splicing of WAVE Program with Baseline Constraints ... 56
9.4.1 Background ... 56
9.4.2 Pre-condition .. 56
9.4.3 Parameters and Variants .. 57
9.4.4 Stimulus ... 57
9.4.5 Expected Observation ... 57

9.5 Joint Playback of Video and Subtitles .. 57

v

9.5.1 Background ... 57
10 Video Capabilities and Requirements .. 58

10.1 Introduction .. 58
10.2 Media Profiles .. 58

10.2.1 General .. 58
10.2.2 Media Profile: CMAF AVC HD ('cfhd') ... 60
10.2.3 Media Profile: CMAF HEVC HHD10 ('chh1') .. 61
10.2.4 Media Profile: CMAF HEVC UHD10 ('cud1') .. 61
10.2.5 Media Profile: CMAF HEVC HDR10 ('chd1') .. 61
10.2.6 Media Profile: CMAF HEVC HLG10 ('clg1') .. 61

10.3 Cross-Media Profile Video Splice Playback Requirements .. 61
11 Audio Capabilities and Requirements .. 61

11.1 General ... 61
11.2 Media Profiles .. 62
11.3 Cross-Media Profile Audio Splice Playback Requirements .. 62

12 Subtitle Capabilities and Requirements ... 62
12.1 Introduction .. 62

13 Other Device Playback Requirements ... 62
14 Device Core Profiles ... 62

14.1 Introduction .. 62
15 Device Extension Profiles ... 62

15.1 Introduction .. 62
16 Configurations .. 63

16.1 Introduction .. 63
16.2 Encryption .. 63

16.2.1 Configuration Options ... 63
16.2.2 Capability Discovery .. 63
16.2.3 Playback Requirements... 63

Annex A: Device Capability Discovery (Informative) .. 64
A.1. General ... 64
A.2. Capability Discovery Options (not about signaling) ... 64

A.2.1. Media Profile ... 65
A.2.2. CMAF Header .. 65
A.2.3. MIME Subparameters ... 65
A.2.4. Media Capabilities ... 66
A.2.5. Device Capability – Persistent Item Solution .. 66
A.2.6. User Agent String .. 67
A.2.7. WAVE Playback Capabilities .. 67
A.2.8. Rendering and Display Capabilities ... 68

vi

A.3. Recommendations for Capability Discovery APIs .. 68
Annex B: Relevant HTML 5 APIs (Informative) ... 69

B.1 General .. 69
B.2 Relevant Web Media APIs ... 69

Table of Figures
Figure 1: WAVE Architecture Model ... 4
Figure 2: HTML 5 and MSE based Media Source model ... 6
Figure 3: Abstracted device model for Type 3 playback ... 7
Figure 4: Abstracted device model for Type 1 playback ... 8
Figure 5: CMAF Content Model .. 10
Figure 6: Device playback model .. 15
Figure 7: Simplified playback model ... 22
Figure 8: EME ISOBMFF Stream Format Spec ... 26

file://crv-cta-fs03/T&S/WAVE/Specs/CTA-5003.docx#_Toc533669015

vii

Forward
This document was developed by the Web Application Video Ecosystem (WAVE) Project of the
Consumer Technology Association1. The WAVE Project is a broad industry initiative of content,
technology, infrastructure and device companies, all working together towards commercial
Internet video interoperability based on industry standards.

1 See https://cta.tech/WAVE

https://cta.tech/WAVE

1

Web Application Video Ecosystem –
Device Playback Capabilities

1 Scope
The scope of this document is to define normative requirements around playback of CTA WAVE
content, i.e., primarily segmented media content. These requirements will be applicable to
HTML 5 based playback of type 1 and type 3 as well as non-HTML 5 devices. Playback of content
includes detecting the ability to playback WAVE content and programs (where WAVE programs
are sequences of CMAF presentations) and playing back the content in different scenarios
(regular, random access, chunked mode, etc.).

2 References
2.1 Normative References
The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.

These normative references are intended to include corrigenda and amendments available at
the time of use.

2.2 Informative References
The following documents contain provisions that, through reference in this text, constitute
informative provisions of this document. At the time of publication, the editions indicated were
valid. All documents are subject to revision, and parties to agreements based on this document

[WAVE-CON] Web Application Video Ecosystem (WAVE) Content Specification, Consumer
Technology Association (CTA), 2018 Edition, April 2018.

[WAVE-WMA] Web Media API Snapshot 2017, Draft Community Group Report 13
February 2018, https://w3c.github.io/webmediaapi/

[CMAF] ISO/IEC 23000-19, Information technology — Coding of audio-visual
objects — Part 19: Common media application format (CMAF) for
segmented media. https://www.iso.org/standard/71975.html

[CMAF A1] ISO/IEC 23000-19:2018, Information technology — Coding of audio-visual
objects — Part 19: Common media application format (CMAF) for
segmented media, Amendment 1.

https://w3c.github.io/webmediaapi/
https://www.iso.org/standard/71975.html

2

are encouraged to investigate the possibility of applying the most recent editions of the
documents listed here.

[MEDIA-SOURCE] Media Source Extensions, W3C Recommendation 17 November
2016, http://www.w3.org/TR/media-source/

[ENCRYPTED-MEDIA] Encrypted Media Extensions, W3C Recommendation 18
September 2017, http://www.w3.org/TR/encrypted-media/

[MSE-FORMAT-ISOBMFF] ISO BMFF Byte Stream Format, W3C Working Group Note 04
October 2016, http://www.w3.org/TR/mse-byte-stream-format-
isobmff/

[HTML51] HTML 5.1 2nd Edition. Steve Faulkner; Arron Eicholz; Travis
Leithead; Alex Danilo. W3C. 3 October 2017. W3C
Recommendation. https://www.w3.org/TR/html51/

[ECMASCRIPT-5.1] ECMAScript Language Specification, Edition 5.1. Ecma
International. June 2011. Standard, http://www.ecma-
international.org/publications/standards/Ecma-262.htm

[WEBAUDIO] Web Audio API. Paul Adenot; Chris Wilson; Chris Rogers. W3C. 8
December 2015. W3C Working Draft.
https://www.w3.org/TR/webaudio/

[DASH] ISO/IEC 23009-1: Dynamic Adaptive Streaming over HTTP: Media
Presentation Description and Segment Formats

3 Document Notation and Conventions
The following terms are used to specify conformance elements of this specification. These are
adopted from the ISO/IEC Directives, Part 2, Annex H [ISO-P2H ISO-P2H]. For more information,
please refer to those directives.

• SHALL and SHALL NOT indicate requirements strictly to be followed in order to conform
to the document and from which no deviation is permitted.

• SHOULD and SHOULD NOT indicate that among several possibilities one is
recommended as particularly suitable, without mentioning or excluding others, or that a
certain course of action is preferred but not necessarily required, or that (in the
negative form) a certain possibility or course of action is deprecated but not prohibited.

• MAY and NEED NOT indicate a course of action permissible within the limits of the
document.

Terms defined to have a specific meaning within this specification will be capitalized – e.g.,
“Track”, and should be interpreted with their general meaning if not capitalized.

http://www.w3.org/TR/media-source/
http://www.w3.org/TR/encrypted-media/
http://www.w3.org/TR/mse-byte-stream-format-isobmff/
http://www.w3.org/TR/mse-byte-stream-format-isobmff/
https://www.w3.org/TR/html51/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.w3.org/TR/webaudio/

3

4 Acronyms
API Application Programming Interface
AVC Advanced Video Coding
BMFF Base Media File Format
CBC Cypher Block Chaining
CDM Content Decryption Module
CEA Consumer Electronics Association
CENC MPEG Common ENCryption
CMAF MPEG Common Media Application Format
CPU Central Processing Unit
CSS Cascading Style Sheets
CTA Consumer Technology Association
CTR CounTeR block cipher mode
DASH Dynamic Adaptive Streaming over HTTP
DRM Digital Rights Management
ECMASCRIPT European Computer Manufacturers Association SCRIPTing
EME Encrypted Media Extensions
HbbTV Hybrid broadcast broadband TV
HDCP High-bandwidth Digital Content Protection
HDMI High- Definition Multimedia Interface
HEVC High Efficiency Video Coding
HLS HTTP Live Streaming
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IEC International Electrotechnical Commission
ISO Abbreviated name of the International Organization for Standardization
JSON JavaScript Object Notation
KID Key IDentifier
MIME Multipurpose Internet Mail Extensions
MPD Media Presentation Description
MSE Media Source Extensions
NAL Network Abstraction Layer
PSSH Protection System Specific Header
UHD Ultra High Definition
URL Uniform Resource Locator
UTC Coordinated Universal Time

4

WAVE Web Application Video Ecosystem
XHTML Extensible HyperText Markup Language

5 Architecture and WAVE Device Reference Model
5.1 WAVE Architecture
The WAVE architecture considers three primary domains: WAVE content, an application that is
based on WAVE APIs and the WAVE Device Platform. WAVE specifications are an enabler to
support

• Generation of content independently of an application that can be played back on
WAVE devices using well defined content formats, playback APIs and device
functionalities.

• Implementation of device platforms that enable playback of commonly generated
content through well-defined APIs.

• Development of media applications that enable playback of commonly generated
content on a broad variety of devices using common APIs.

This architecture enables an ecosystem of independent content generation, app development
and device implementations and permits the use of same content within different apps as well
as across many different device platforms.

WAVE Content WAVE Device Platform

Application based on WAVE APIs

DRM

Protocols

Media
Decoder DRMOthersEncoded

Media

Media
API DRM API

OthersOthers

Other
APIs

Other
APIs

PresentationControl and
Configuration

Figure 1: WAVE Architecture Model

This WAVE specification primarily deals with the requirements of a WAVE Device Platform that
may be used by an application implementing WAVE APIs to play back WAVE content. The
requirements are purposely held abstract in order to support different application and device
interface models. Nevertheless, the use of HTML 5 APIs defined in [WAVE-WMA] is one of the
prime objectives. The APIs also differentiate between devices supporting different playback
variants, primarily Type 1 and Type 3:

5

• Type 1 Playback: The WAVE device platform receives a manifest and downloads and
plays back the contained media based on the information in the manifest. An
application may control the playback with limited control features.

• Type 3 Playback: The WAVE application receives a manifest, downloads the media and
uses media APIs in order to playback individual tracks of the media experience. The
application is in control of the download and playback of the media using track buffers.

5.2 WAVE Device Playback Reference Model
5.2.1 Overview

Based on the architecture in clause 5.1, this clause defines abstracted device models. A device
model for Type 3 playback is shown in Figure 3 and a device model for Type 1 playback is shown
in Figure 4.

The focus of this initial specification is on Type 3 playback – i.e., the application has access to
the streaming manifest and parses and processes the manifest.

This specification follows the HTML 5 and MSE model as shown in Figure 2. A Media Element
provides an output and control environment for the playback of media data. A Media Source
object represents a source of media data that can be addressed by an application. The
MediaSource combines a list of SourceBuffer objects that can be used to add media data to the
presentation. MediaSource objects are created by the application. The application uses the
SourceBuffer objects to add media data to this source. In addition, Encrypted Media Extensions
(EME) and a Content Decryption Module (CDM) support APIs and functionalities for decryption.

While this specification attempts to abstract from the concrete instantiation in HTML Media
element and MSE implementation, in case of ambiguities the terminology for the HTML 5/MSE
instantiation applies.

6

Figure 2: HTML 5 and MSE based Media Source model

In the context of this specification, as CTA WAVE content relies on CMAF content, and CMAF
content only uses non-multiplexed tracks, a source buffer is directly mapped to a single track
buffer. Hence, these two terms are used synonymously and interchangeably.

An application that receives a manifest referring to CTA WAVE content is expected to have
access to two primary high-level APIs:

• Control API: This API is primarily responsible for capability discovery of the device
platform, establishing and tearing down media source objects and source/track buffers
for specific media types, as well as to control the playback of media.

• Media API: This API consists of one or multiple track/source buffers where the source
buffers can be dynamically established and removed. The track/source buffers enable
playback of WAVE content by the device platform.

In the case of a streaming application, the application deals with manifest updates as well as
with providing/downloading the segments that are then forwarded to the device platform for
playback using the media APIs.

The device platform is expected to provide rendering capabilities. A video display region and an
audio device are available as output. The final control of the playback of the media may be

7

handled by the application or it may be part of the device platform. However, it is assumed that
a device-oriented mode exists for which playback is primarily the task of the device.

Such a mode may be used in a testing environment such that the device’s video and audio
output are used to observe if the device platform is capable of fulfilling a set of playback
requirements. The application is out of scope for this specification but is assumed that any
application that supports the methods and functions of the control and media API can use the
device to playback content.

Application

Device Platform

Media Element

Track
Buffer

Track
Buffer

Track
Buffer

Media API type 3

Track
Buffer

Display

Speaker

Co
nt

ro
l

Manifest
Download, Update

and Processing

Segment
Download

Figure 3: Abstracted device model for Type 3 playback

For type 1 playback, the application has access to the URL of a streaming manifest, but the URL
is provided to the device platform through a different type of API. The downloading and
processing of the manifest as well as the downloading of the segments is native to the device
platform. Application to device platform communication is again split into two primary APIs:

• The control API: This API is primarily responsible for capability discovery of the device
platform, establishing and tearing down video elements buffers for specific codecs, as
well as to control the playback of media through video elements.

• The media API: this API consists of one or multiple video elements where the video
elements can be dynamically established and removed. Each video element enables
playback of WAVE content made available through a proper manifest.

Any interfaces between the device platform and external displays or speakers is out of scope of
this specification.

In this specification, the primary focus is on type 3 based playback – i.e. it is assumed that the
application does manifest download and processing and can establish and playback WAVE

8

content using a set of track buffers. The application of the requirements in this specification to
type 1 playback may be addressed in a future version of the specification.

Application

Device Platform

Media
Element

Media API type 1

Display

Speaker

Co
nt

ro
l

AP
I

Manifest
Processing

Manifest
URL

Media
Element

Manifest
Processing

Media
Element

Manifest
Processing

Segment
Download

Figure 4: Abstracted device model for Type 1 playback

5.2.2 Wave Device Platform APIs

5.2.2.1 Introduction

Following Figure 3, the usage of APIs enables abstraction to the device and playback model. The
differentiation between control APIs and media APIs relates to the two complementary WAVE
specifications. The control API focuses on the application functions, whereas the media API
focuses on playback of WAVE content.

5.2.2.2 Control API

The control API includes all functions to establish, maintain and control media playback. Control
APIs are typically used for the initialization phase or at the change of configurations.

5.2.2.3 Media API

The media API includes all functions to feed and playback WAVE content.

5.2.2.4 Video and Audio Output

9

With setting up a source buffer for a video media type, either:

• a pre-determined display window that matches the aspect ratio and size of the
content (height and width) is established, or

• a full-screen display is established.

With setting up a source buffer for an audio media type, an audio output is established.

5.2.3 Web Media API-based Playback Model

This specification is primarily written with the Web Media API-based Playback Model [WAVE-
WMA] in mind.

The following two core specifications are mandated in [WAVE-WMA]

• HTML 5.1 [HTML51], devices acting as Web browsers that support the HTML syntax and
the XHTML syntax, scripting, and the suggested default rendering.

• ECMAScript Language Specification, Edition 5.1 [ECMASCRIPT-5.1].

For Media playback, the following three specifications are mandated in [WAVE-WMA]:

• Encrypted Media Extensions [ENCRYPTED-MEDIA].
• Media Source Extensions [MEDIA-SOURCE].
• Web Audio API [WEBAUDIO] with some exceptions.

It is expected that any device playback tests testing the requirements in this specification rely
on the APIs mentioned above.

This specification provides an overview of the key functions and methods that are available for
applications, both for testing and for playback. The specification is written in a way such that
the functions and methods provided by the above specifications can directly be used for testing
and playback.

5.3 WAVE Content
5.3.1 Overview

The WAVE Content [WAVE-CON] specification defines WAVE content. As indicated in clause 3 of
[WAVE-CON], WAVE content is based on CMAF [CMAF]. This document also introduces models
on the CMAF content model.

WAVE Content is offered as WAVE Programs. A WAVE Program is a sequence of CMAF
Presentations, played back sequentially. Sequential playback means that the timing of the
playback is controlled by the application, including the ability to create smooth playback
without interruptions.

10

Clause 5.3.2 introduces the CMAF Content Model and clause 5.3.3 introduces the WAVE
Content Model based on CMAF.

5.3.2 CMAF Content Model

5.3.2.1 Overview

The CMAF content model is shown in Figure 5.

This specification uses CMAF defined terms according to the CMAF definitions. The key terms
the reader of this specification should be familiar with are:

• CMAF Presentation
• CMAF Switching Set
• CMAF Track
• CMAF Header, CMAF Chunk, CMAF Fragment, CMAF Segment
• Decode times of samples
• Presentation times of samples

Figure 5: CMAF Content Model

A media sample is media data in a CMAF track associated with a single decode start time and
duration.

5.3.2.2 CMAF Addressable Objects

This section provides an overview on CMAF addressable objects, namely

• CMAF Track Structure in [CMAF].

11

• CMAF Chunk Structure in [CMAF].
• CMAF Fragment Structure in [CMAF].
• CMAF Segment Structure in [CMAF].

For details, please refer to the CMAF specification [CMAF].

In the remainder of this specification, it is assumed that for test purposes the application can
access CMAF Headers, CMAF Fragments, continuous byte ranges of a single CMAF Fragment of
arbitrary size and CMAF Chunks as units and hand those to the media API. The access may for
example be through HTTP or any other protocol but could also access the data from a local file
storage.

Note that in practical applications, CMAF Fragments and CMAF Chunks may be embedded in
Segments (e.g., DASH or HLS). Normally segments are the addressable units, i.e. units with an
assigned URL. However, for the purpose of testing, it is assumed that CMAF Fragments are
addressable (e.g., by a 1-to-1 mapping of CMAF Fragments to Segments) and CMAF Chunks are
accessible or addressable (e.g., by a 1-to-1 mapping to DASH delivery units or by using a chunk
index as part of Segment).

5.3.2.3 CMAF presentation timing model

There are multiple timelines involved in playout and rendering CMAF tracks within a
presentation.

Each track is a sequence of timed samples. Each sample has a decode time and may also have a
composition (display) time offset. Edit lists may be used to over-ride the implicit direct mapping
of the media timeline, into the timeline of the overall movie. The movie timeline is used to
synchronize CMAF Tracks in a CMAF presentation and also serves as the synchronization source
for playback in an HTML 5 media element and the media source.

In addition, each CMAF Track may have assigned an anchor wall-clock time – e.g., UTC time. The
wall clock time may be used to relate the relative presentation time of the track to a wall-clock
time, for example expressing the time when the corresponding sample was captured, encoded,
or packaged.

In summary, three timelines exist and the signaling of the timeline in CMAF is summarized as
follows:

• Decode time: The decode time of each CMAF chunk is provided as the
baseMediaDecodeTime in a TrackFragmentBaseMediaDecodeTimeBox. This provides
the decode time of the first sample in the CMAF chunk and the remaining decode times
are derived by the sample durations in the 'traf' box.

• Presentation time: The presentation time of each sample in a fragment is determined by
the decode time of the sample and, if present, the composition offset (in the sample
table) and the track edit list (in the track header). The earliest presentation time in a
CMAF Fragment is important for synchronization and switching. Note that the earliest

12

presentation time of a CMAF Fragment may not be the presentation time of the first
sample of the CMAF Fragment. In the remainder of the document, presentation time is
also referred to as media time.

• Wall-clock time: By the use of a ProducerReferenceTimeBox (‘prtf’), the sample with a
specific decode time can be mapped to wall-clock time.

5.3.2.4 CMAF Track Model for this Specification

For the specification, the following definitions are relevant for CMAF Tracks. For each CMAF
Track k (k=1,...,K) in a CMAF Switching Set, the following features are defined:

• CMAF Header CH[k], k=1,…,K
• CMAF Fragments CF[k,i], i = 1,2,3,… N

o Position in the CMAF track i
o Earliest presentation time: tf[k,i]
o CMAF Fragment duration: df[k,i] = tf[k,i+1]-tf[k,i]
o Wall-clock time assigned to the earliest presentation time of CMAF Fragment:

twc[k,i]
o CMAF Chunks CC[k,i,j], j = 1,2,3,…, C[i]

 Position in the fragment j
 Earliest decode time tc[k,i,j]
 Chunk duration in decode times dc[k,i,j]

• An edit list EL[k] that may be present in the CMAF header describing the difference
between the composition time and the presentation for this track in the CMAF
Presentation.

• The earliest presentation time of the first fragment, i.e. tf[k,i=1] (presentation time
offset)

• The duration of the CMAF Track is defined as td[k]
• The CMAF Track has an assigned media profile, which includes:

o CMAF media profile brand
o Suitable MIME Type string providing

 Media type
 Codecs parameter
 Profiles parameter <reference>

• The CMAF Track has samples sample[k,s] with s=1, …, S, each with nominal
presentation time T[k,s].

5.3.2.5 CMAF Switching Set Model for this Specification

The following defines a Switching Set:

• A set of CMAF Tracks conforming to the conditions in clause 5.3.2.4.
• The CMAF Switching Set may contain a single CMAF Header for all CMAF Tracks or an

individual CMAF Header for each CMAF Track.

13

• A Master CMAF Header CH*. Either the single header or a Master CMAF Header
assigned to the Switching Set CH*.

From the definition of a CMAF Switching Set [CMAF], the following holds:

• All CMAF Tracks in a Switching Set conform to one media profile.
• There exists one CMAF Header that is used to initialize the playback of the Switching

Set. This header referred as Master CMAF Header CH*.
• The CMAF Header for each track in a Switching Set is defined such that appending it to

the source buffer does not result in a reinitialization of the decoding and rendering
platform.

• Each CMAF Track in a Switching Set has the same number of CMAF Fragments.
• The earliest decoding time of each CMAF Fragment at the same position i in different

CMAF Tracks of a CMAF Switching Set are identical.
• The earliest presentation time of each CMAF Fragment at the same position i in

different CMAF Tracks of a CMAF Switching Set are identical.
• The fragment duration of each CMAF Fragment at the same position in different CMAF

Tracks or a CMAF Switching Set are identical.

Note that the equalities above only hold for CMAF Fragments, not necessarily for CMAF Chunks.

5.3.3 WAVE Content Model

5.3.3.1 Overview

WAVE defines a program model and continuous switching sets.

5.3.3.2 WAVE Presentations and Programs

WAVE Programs are a sequence of WAVE Presentations that are played consecutively [WAVE-
CON][CMAF]. WAVE presentations in one WAVE program may follow certain constraints and
restrictions.

A WAVE Presentation is defined as a collection of WAVE Selection Sets. For each Selection Set,
it is expected that one Source Buffer is established using the associated CMAF master header
and media type. Typically, at least one Selection Set for audio and one Selection Set for video is
available.

Each Selection Set contains one or multiple Switching Sets as defined in clause 5.3.2.5.

All tracks in a presentation follow the presentation timing model of clause 5.3.2.3.

5.3.3.3 WAVE Splice Constraints

14

WAVE Splice constraints [WAVE-CON] are defined to ensure seamless playback across
presentation boundaries.

5.3.3.4 WAVE Continuous Switching Sets

Continuous switching sets permit to continue playout media without timeline updates.

• For each track k in a switching set s that is a continuation of a switching set r, the
following features are defined and requirements hold:

o For CMAF Header CH[s,k] = CH[r,k].
o Decode time of first fragment of s equals decoding time of last fragment plus

fragment duration.

The earliest presentation time of the first fragment of the switching set s equals the earliest
presentation time of the last fragment of r plus the last fragment duration of r: tf[s, k,
i=1] = tf[r, k, i=N] + df[s, k, i=N].

5.3.3.5 WAVE Splice Conditioned Switching Sets

From the definition of a CMAF WAVE Splice conditioned Switching Sets [WAVE-CON][CMAF] ,
the following holds for two switching sets r and s:

• All CMAF Tracks in both Switching Sets conform to one media profile.
• There exists one CMAF Header that is used to initialize the playback of both Switching

Sets. This header referred as Master CMAF Header. Note that this master header may
be the master header of one of the two Switching Sets or may be superset of the those.

• The CMAF Header for each track in each Switching Set is such that appending it to the
source buffer does not result in a reinitialization of the decoding and rendering
platform.

5.3.4 Content Model Format

In order to test and define content, this specification defines a content model format for
properly referencing content. This content model format document follows the concept of a
DASH Media Presentation Description (MPD) [DASH] but simplifies the description.

The first version does not yet define a content model, but an update is expected in the next
version once the first test content is provided.

15

5.4 Scope of This Specification
5.4.1 Introduction

This specification deals with providing requirements following the description in Figure 6.
Devices with capabilities defined in this specification can play back WAVE content using well-
defined APIs following the model from above. Playback includes different aspects, and for each
of these aspects the APIs and the units of WAVE content are used in different ways to stimulate
the playback.

If a device supports certain capabilities (that can possibly be queried by an external
application), then using well-defined API calls as well as WAVE content when stimulating media
track buffers enables playback of media content.

Figure 6: Device playback model

5.4.2 Conformance Aspects and Interoperability

This specification defines different conformance and interoperability points for devices.

• Media Profile Playback: Enables playback of a CMAF Media Profile as part of a WAVE
Presentation.

• Device Core Profiles: Enable playback of WAVE Programs conforming to a WAVE
Program “Profile”.

• A full set of media profile playback capabilities that permit playback of WAVE
Presentations.

• Capability of transition across different WAVE Presentations.

• Additional requirements such as media synchronization, etc.

• Device Extension Profiles: Enable playback of enhanced experiences beyond a Device
Core Profile if the content provides the extension and the device supports the
extensions.

16

• Examples are media profiles, or, for example, seamless switching across codecs,
etc.

• Configurations: Enable playback of a Device Core Profile or Device Extension Profile
with a specific configuration by supporting at least one configuration.

The initial conformance point provided in this specification is media profile playback
conformance.

It is expected that in later versions, the primary conformance points for this specification will be
the device core profiles. Device core profiles collect a set of requirements, and a device
conforms to a device profile if it conforms to all requirements that are associated to that device
profile. A device core profile supports a full audio-visual experience to play back a WAVE
Presentation Profile.

5.4.3 Tests, Performance and Performance Requirements

This specification is written such that the tests can be defined. Tests describe the usage of
playback APIs and the expected resulting observations. Such observations may be documented
at a high-level, but it is preferable that well-defined and measurable performance requirements
are defined. Whereas an ideal performance may be desirable and should be documented, in
certain case a degradation of the ideal performance may also be acceptable. In this case not
only the ideal performance is documented, but also minimum performance requirements for a
device.

5.4.4 Existing and New Devices

This specification is written primarily for the development and testing of new devices. Device
platform manufacturers are expected to take into account the requirements when developing
new devices. In this case the device maker should target to meet the device playback
performance requirements as documented in this specification.

However, this specification also permits testing existing devices for their performance and to
document the performance and suitability for WAVE content playback. In this case, even if a
device does not fulfill the full performance requirements, the device may still be used for
playback as long some minimum performance requirements are fulfilled.

This specification can be used for both cases.

6 Media Playback Model
6.1 Introduction
For an application to make use of the device platform for playback of a CTA WAVE content, it
requires the following principle actions:

17

1. Establishing a Media Element that enables the control and presentation of media data.
2. Establishing a Media Source that serves as the source of media data for a Media

element.
3. Checking if the device is capable of establishing a Source Buffer for playback of a specific

CMAF media profile.
4. Establishing a Source Buffer that enables the playback of the WAVE through a well-

defined set of APIs.
5. Using the source buffers and the media element for controlled playback.

A device should only establish a Source Buffer for a media type if the device is capable of
playing back at least one of the included WAVE media profiles for each media type in the WAVE
content offerings.

Once a source buffer for a media type is established, this source buffer is used for the playback
of the media type.

6.2 Media Element and Source Establishment
6.2.1 General

A Media Element presents an output and control environment for WAVE content playback. The
Media Source represents as a source of WAVE content that is consumed by a Media element.
Source Buffers are added for specific media playback. A Media element is established for
playback of a WAVE Presentation and a Media Source is attached to it to dynamically add WAVE
content. The media element permits playback control functions such as playback, pause, mute,
etc.

6.2.2 Web Media API-based Media Element and Source Establishment

The video element is a media element whose media data is ostensibly video data, possibly with
associated audio data. The src, preload, autoplay, loop, muted, and controls attributes are the
attributes common to all media elements. For details see
https://www.w3.org/TR/html51/semantics-embedded-content.html#the-video-element.

The Media Source Extensions [MEDIA-SOURCE] Specification defines the MediaSource object.
The MediaSource object represents a source of media data for an HTMLMediaElement. It also
includes a list of SourceBuffer objects to add media data to the presentation. MediaSource
objects are created by the web application and then attached to an HTMLMediaElement.

• For details, see https://www.w3.org/TR/media-source/#mediasource

https://www.w3.org/TR/html51/semantics-embedded-content.html%23the-video-element
https://www.w3.org/TR/media-source/#mediasource

18

6.3 Media Element and Media Source Control
6.3.1 General

For a media element, at least the following functions are expected to be available:

• Play: Initiates playback of the media added to the media element from the start of the
buffer.

• Seek: Seeks to a media time of the media included in the buffer.
• Pause: Pauses the playback of the media in the buffer.

For a media element, it is expected that an application can at least observe the following
information

• buffered: Provides the buffered media time ranges of the media in the media source.
• currentTime: Indicates the current playback media time.

6.3.2 Web Media API-based Media Element and Media Source Control

In the Web Media API [WAVE-WMAError! Reference source not found.] context, a subset of
properties and methods are available. For convenience and completeness of this spec, this is
document in Annex B.2.

6.4 Device Capability
6.4.1 General

A first requirement is the establishment of a source buffer for each relevant media type of the
WAVE Presentation. In order to establish such a source buffer, two aspects are relevant:

• Support of the generic baseline CMAF content format.
• Support of a specific media profile.

In the context of this specification it is assumed that a device supports playback of the CMAF
content format.

In addition, WAVE content may be offered with different options that an application can choose
from based on its device capabilities. The WAVE content specification defines multiple media
profiles for each media type. Hence, an application should determine the device capabilities
and based on this select the proper content options. Device capability discovery is an essential
feature for an Internet media-based ecosystem.

However, based on the discussion in Annex A, this specification does not mandate a specific
device capability discovery mechanism in this initial version of the specification. Device
capabilities are inconsistently implemented today in devices, so multiple approaches are

19

discussed, and it is expected that implementations will evolve over time. However, at this stage
an application should be prepared to run multiple steps for capability discovery.

Based on the discussions in Annex A, it is recommended that new devices support the Media
Profile capability discovery as defined in Annex A.2.2. However, devices may not implement the
handling of the profile MIME subparameter and/or the details of the CMAF media profiles, and
hence the response of the device for such an API may be unknown. In particular, existing
devices may be not supporting such an API at all.

If a media profile wants to enable playback on devices that do not support the media capability
API, then it is recommended that the media profile documents other means for capability
detection for such a media profile, in particular using one of the following:

• MIME Subparameters as documented in Annex A.2.3.
• Media Capability approach as documented in Annex A.2.4.

Each media profile should provide sufficient information on how to use APIs for capability
discovery in order to ensure the playback of the media profile following the requirements in
this specification. Specifically, suitable capability discovery for existing devices is recommended
to be added.

Media Profiles document how to use the Media Capability API with their media profile to
identify options and parameters in their profile.

If none of the above methods are applicable or sufficiently conclusive, it is recommended that a
source/track buffer with the media type is established as defined in clause 6.5, and the
successful establishment is used as an indication for successful playback.

6.4.2 Web Media API-based Capability Discovery

If a media source is to be created, the MediaSource.isTypeSupported(type) method
may be used.

• For details, see: https://www.w3.org/TR/media-source/#dom-mediasource-
istypesupported.

• The method is expected to return "false" or "true".

In the context of this specification, the MIME-types for this specification must conform to the
rules outlined for "audio/mp4" and "video/mp4" in RFC 6381, i.e. the ISO BMFF Byte Stream
format is used as defined in [MSE-FORMAT-ISOBMFF].

The proper type for each media profile is defined in the WAVE content specification [WAVE-
CON]. If the device responds to this method with true, the device claims to support playback
of a specific WAVE media profile, then this specification defines the requirements that need to
be fulfilled.

https://www.w3.org/TR/media-source/#dom-mediasource-istypesupported
https://www.w3.org/TR/media-source/#dom-mediasource-istypesupported

20

As an alternative to the isSupportedType method, a CMAF Header may be appended once
the Source Buffer is established (see clause 6.5 for details) and then the source buffer
monitored for any error.

6.5 Source Buffer Management
6.5.1 General

To make use of the platform for media playback, the source buffer needs to be added and
initialized properly.

A WAVE device shall support an API such that the application can create a new source buffer for
a specific media type and add the buffer to the media source buffer list.

A device compliant to WAVE shall allow to establish at least one source buffer for media type
video and one for media type audio. A WAVE device should support the establishment of a
source buffer for the playback for subtitles. A WAVE device may support the establishment
of multiple source buffers for each media type.

A WAVE device shall support an API to establish a source buffer for CMAF content playback.

A WAVE device shall support an API such that the application can remove a source buffer from
the media source buffer list.

For all media types, a WAVE device shall support an API such that the application can update
the configuration of the source buffer. It is recommended that the source buffer is only
updated if the update follows the requirements documented in the remainder of this
specification. Otherwise, it is recommended to remove the source buffer and re-establish a new
one with the new configuration.

A source buffer is expected to be established for each media type individually by:

1) Adding a source buffer providing the media type, possibly augmented with MIME sub -
parameters.

2) If 1 is successful, initialize the source buffer with an appropriate CMAF Master header.
3) Create a proper output environment for each established source buffer.

a. For video a pre-determined display window that matches the aspect ratio and
either:

i. default to the size of the content (height and width) of the CMAF Master
Header is established,

ii. or as an option a fullscreen mode may be used as well.
b. For audio, no specific provisioning is done unless the media profile defines a

specific output environment.

In addition, successful establishment of the source buffer also implies that the set of media APIs
documented in clause 6.6 are supported and can be used by the application for media playback.

21

6.5.2 Web Media API-based Source Buffer Management

The Media Specification defines the MediaSource.addSourceBuffer(type) method.

• For details, see https://www.w3.org/TR/media-source/#dom-mediasource-
addsourcebuffer.

• The method returns a source buffer.

The type shall follow the requirements in ISO BMFF Byte Stream Format [MSE-FORMAT-
ISOBMFF], clause 2.

The source buffer is further initialized by appending a CMAF header (CH) to the
SourceBuffer by using the MediaSource.appendBuffer(CH). For a Switching Set,
the CMAF Master Header shall be used.

The source buffer may be updated/re-initialized by appending a CMAF header (CH) to the
SourceBuffer by using the MediaSource.appendBuffer(CH).

The source buffer is further managed by the
MediaSource.removeSourceBuffer(type) method.

• For details, see https://www.w3.org/TR/media-source/#dom-mediasource-
removesourcebuffer.

• The method does not return any value.

The display window is established by using width and height from the CMAF Header.

6.6 Device Playback Model for a Single Source Buffer
6.6.1 Introduction

In this clause, a set of media playback APIs are introduced that permit the playback of WAVE
content using these APIs. This specification does not provide requirements for the functional
availability of these media APIs but assumes that these functions are available. For instance,
these media APIs can be realized with W3C Media Source Extensions [MEDIA-SOURCE] as listed
in clause 6.2.2.

Furthermore, it is assumed that a source buffer is established with some configuration
parameters according to the requirements in clause 6.5. In addition, the capability discovery in
clause 6.4 resulted in an acknowledgement that the WAVE content collected in the media
profile can be played back.

Functions and properties described in the following are:

• Methods and parameters to support the playback.
• Observations that permit to query the state of the playback.

https://www.w3.org/TR/media-source/#dom-mediasource-addsourcebuffer
https://www.w3.org/TR/media-source/#dom-mediasource-addsourcebuffer
https://www.w3.org/TR/media-source/#dom-mediasource-removesourcebuffer
https://www.w3.org/TR/media-source/#dom-mediasource-removesourcebuffer

22

These functions and methods may be general or may be specific for specific media types. A
simplified playback model for a single media type is provided in Figure 7.

Figure 7: Simplified playback model

6.6.2 General

This clause outlines the source buffer model for this specification. It describes the various rules
and behaviors associated with appending data to an individual SourceBuffer. At the highest
level, the web application creates SourceBuffer objects and appends sequences of CMAF data
to update their state. The media element pulls media data out of the MediaSource object, plays
it, and fires events. The application is expected to monitor these events, for example to
determine when it needs to append more CMAF media data.

The SourceBuffer is expected to basically implement algorithms aligned to those defined in
[MEDIA-SOURCE], clause 3.5. It also inherits the methods from the Media Element or Media
Source as defined in clause 6.7.

The key method is the appendBuffer functionality. In the context of CTA WAVE
specification, this method has the following parameters:

• data: The appended data is a CTA WAVE addressable resource. The appended data is
added to the buffer by including the data in the timeline and possibly overwriting
existing data in the buffer.

• offset: Optional parameter to signal the offset that needs to be applied to the
presentation time in order to map it to the media timeline. If not provided, the
parameter is assumed to be 0.

23

Once this method is invoked, but the buffer is unable to accept data, the device is expected to
run proper methods. For example:

• Append Error Algorithm as defined in [MEDIA-SOURCE], clause 3.5.3.
• Coded Frame Eviction Algorithm as defined in [MEDIA-SOURCE], clause 3.5.10.

If invoked and the buffer is able to accept data, the underlying platform is expected to run the
following steps to process the appended data (note that this is a high-level description on what
is defined in [MSE]):

• The appended data data is parsed.
o If invalid data not conforming to CTA WAVE content is found, an appropriate

error algorithm is run and an event is fired. The appended data data is ignored
and not appended.

o Any bytes that the byte stream format specifications require to be ignored are
removed from the start of the input buffer. The byte stream specification format
for CMAF data follows the mp4 ISO BMFF Byte Stream Format [MSE-FORMAT-
ISOBMFF].

o If the parsed data data is a CMAF Header:
 Run the CMAF Header Append received function.s

o If the parsed data data is a CMAF Chunk or CMAF Fragment:
 Apply the offset.
 Add the data to the buffer.

o If the parsed data data is any other part of a CMAF Fragment:
 Apply the offset.
 Add the data to the buffer.

The CMAF Header append function:

• If the CMAF Header does not conform to the CMAF Header, ignore the data and stop.
• If the CMAF Header has a non-recognized media profile, ignore, fire an event and stop.
• If the CMAF Header contains a duration, set or update the duration of the media.
• If this is not the first CMAF Header that is added and processed (always the case as the

SourceBuffer Establishment adds CMAF Master Header), check the following:
o Is the same media type received?
o Does the codecs and all other parameters announced in the updated CMAF

Header match was specified in the CMAF Master Header?
o If not, create an event that informs application about an incompatible header.

• If all successful, add track descriptions to track buffers:
o Track description is byte stream specific.

• Set the need for a random-access point for the media.

CMAF Media Append function:

24

• If the Source Buffer is not initialized with a CMAF Header (should never be the case as
the SourceBuffer Establishment adds header), then ignore the data.

• If the appended data data contains one or more coded frames/samples, then add each
sample to the track buffer as follows

o Let dts, pts and dur be the decoding time stamp, presentation time stamp
and duration of the sample.

o Adjust to pts and to dts with the offset value.
o If random access is needed and sample is no random access point, drop frame
o If an overlapped frame is detected.

 Run overlap algorithm, depending on media type.
o Remove existing coded frames from track buffer with non-matching

presentation time
o Remove all frames that depend on any frames removed in the previous two

steps.
o Add coded frame/sample with pts, dts and dur to track buffer.
o Set highest time stamp for track and also set group end timestamp.

• Extend the duration of the track buffer.

The append function allows set the timestamp offset to control the offset applied to
timestamps inside media segments that are subsequently appended to the SourceBuffer.

6.6.3 Web Media API-based Playback

This clause documents the methods and functions of the media source. The details will be
added in a future version of the specification.

NOTE: It is expected that the development of the test environment will support this
documentation.

6.7 Device Playback Model for a Media Element
6.7.1 General

For each media type contained in the WAVE content, a Source Buffer is established.

Each source buffer is then consuming the media of the corresponding type.

6.7.2 Web Media API-based Playback

This clause documents the methods and functions of the media source. The details will be
added in a future version of the specification.

NOTE: It is expected that the development of the test environment will support this
documentation.

25

7 DRM Protected Media
7.1 Introduction
Content security is accomplished in a device by two functions:

1. Key management by a digital rights management system (DRM), which authenticates a
user or their device and authorizes decryption and playback of a Track on that device
under control of the DRM client and under specific conditions – e.g. output protection,
rental period, hardware root of trust, etc.

2. Decryption of a Track encrypted with Common Encryption using either ‘cenc’ or ‘cbcs’
encryption scheme.

Each DRM system has a proprietary trust infrastructure for DRM client private and public key
pairs and encrypted media keys. DRM systems normally use a proprietary license format that
contains encrypted keys and playback conditions specified in a rights expression language. In
the case of FairPlay, the key server only passes an encrypted key and must rely on server
authorization rules (such as checking a valid rental period) and built-in device functionality
(such as requiring output protection). These systems cryptographically bind authorization to a
specific device and content (with one or more Tracks encrypted with that media key), which
prevents a license from being used with unintended content or on unintended devices.

The operation, implementation, and robustness of each DRM system is considered out of scope
for WAVE. DRM systems are assumed to be actively managed and tested to maintain content
security by testing client implementation security, identifying and repairing breaches, revoking
compromised keys, denying keys to compromised devices, securely storing licenses,
maintaining a secure processing environment and memory, integrating with security hardware
to protect keys and decrypted media samples, etc. A WAVE device can select one or more DRM
systems to implement based on commercial factors such as DRM features, robustness,
availability, popularity, provider support, cost, content publisher requirements, etc.

What is in scope for WAVE is correct parsing and decryption of Tracks encrypted with ‘cenc’ or
‘cbcs’ encryption schemes specified in ISO/IEC 23001-7 Common Encryption, and the use of
Encrypted Media Extensions (EME) APIs to request and download a device supported DRM
license or key to test decryption, decoding, and rendering of protected content. Different DRM
systems support different functions, such as persistent licenses, hierarchical licenses, license
rotation, key rotation, multiple keys per license, sample variants, stream counting, secure stop,
higher security for UHD content, etc. The primary focus of WAVE testing is the basic functions
common to all DRM systems with the assumption that DRM-specific tests can be provided by
each DRM system.

Note that the W3C EME specification also defines “Clear Key” decryption in browsers using
Common Encryption, which is useful for authorization but not content protection. If content is
encrypted and a Clear Key offered, a device can request authorization and download of that

26

key, and the authorization server can possibly identify who made the request, how many
authorizations, where or when they were requested, what types of devices, etc. Because Clear
Keys and decrypted content are exposed in main memory, both content and keys can be
redistributed to any other player or browser for unauthorized playback, so Clear Key does not
provide content protection. Because Clear Key exposes keys, it must not be used with a
protected key used by one or more DRM systems.

7.2 Media Profiles and Encryption Schemes
7.2.1 Introduction

The WAVE Content specification allows Common Encryption using either the ‘cenc’ or ‘cbcs’
scheme. Both schemes specify partial sample encryption for NAL structured video, and full
sample encryption for other media types. In the case of ‘cbcs’, “pattern encryption” is used,
which only encrypts 10% of the cipher blocks in a protected byte range using a ten block
pattern. “Full sample encryption” in the case of ‘cbcs’ means the entire sample is protected, not
that all blocks in the pattern are encrypted.

Common Encryption can be applied to any Media Profile using the appropriate sample format.
Partial sample encryption only encrypts the video data contained in specific NAL units so
parsing, display management using header information, NAL manipulation, etc. can be
processed with standard software and CPU before video is passed to secure decryption,
decoding, and rendering that prevents access to the decrypted portion of the samples. All other
Media Profiles use full sample encryption, unless a subsample encryption mapping, like the
mapping to NAL structured video, is specified.

The media and encryption formats supported by W3C Encrypted Media Extensions are specified
here: https://www.w3.org/TR/eme-stream-registry/ and https://www.w3.org/TR/eme-stream-
mp4/.

NOTE: As quoted above, the W3C EME ISOBMFF stream specification only includes the ‘cenc’
scheme and it only references CENC 2nd edition.

Abstract

This specification defines the stream format for using ISO Base Media File Format [ISOBMFF]
content that uses the ISO Common Encryption ('cenc') protection scheme [CENC] with the
Encrypted Media Extensions [ENCRYPTED-MEDIA].

Note:
Although the ISO Base Media File Format [ISOBMFF] associated with this format's MIME
type/subtype strings supports multiple protection schemes, when used with Encrypted
Media Extensions, these strings refer specifically to content encrypted and packaged using
the 'cenc' protection scheme [CENC].

Figure 8: EME ISOBMFF Stream Format Spec

https://www.w3.org/TR/eme-stream-registry/
https://www.w3.org/TR/eme-stream-mp4/
https://www.w3.org/TR/eme-stream-mp4/
https://www.w3.org/TR/eme-stream-mp4/#bib-ISOBMFF
https://www.w3.org/TR/eme-stream-mp4/#bib-CENC
https://www.w3.org/TR/encrypted-media/
https://www.w3.org/TR/eme-stream-mp4/#bib-ENCRYPTED-MEDIA
https://www.w3.org/TR/eme-stream-mp4/#bib-ISOBMFF

27

The 3rd edition of CENC (ISO/IEC 23001-7:2016) added ‘cbcs’ scheme and manifest signaling.
Hence the W3C EME ISO BMFF stream format needs to be updated.

To apply the existing specification for ‘cbcs’ scheme, replace each instance of the 4CC code
‘cenc’ with ‘cbcs’, “CTR mode” with “CBC mode”, and reference the 2016 edition of CENC.
Section 4 recommends including a ‘pssh’ box in every Header in the Common SystemID and
PSSH box format, but that should be deprecated. See CENC 3rd edition for signaling DRM
SystemID, encryption scheme, and default_KID in manifests rather than in each Header.

7.2.2 License Acquisition using the EME API

Overview of license acquisition process and test runner using the EME API

1. When a test playlist signals that a test may contain encrypted content, the test runner will
query what key systems and configurations are supported using
requestMediaKeySystemAccess(DOMString keySystem,
sequence<MediaKeySystemConfiguration> supportedConfigurations)

The sequence of MediaKeySystemConfiguration configurations are tried in order. The
first element with a satisfiable configuration is used. A configuration is an audio/video
content type, optionally including the ‘codecs’ subparameter.

2. The test runner calls createMediaKeys() to create a new MediaKeys object for keySystem. This
object has a sessionId, collects events, exposes the MediaKeyStatusMap, which lists KIDs known
to the session and the status of each key.

3. The test runner calls createSession() to start a MediaKeySession that groups all calls, messages,
and events for this key. There can be multiple simultaneous sessions, e.g. for different audio
and video keys, subsequent presentations, etc.

4. When a license request is signaled, the test runner calls generateRequest(DOMString
initDataType BufferSource initData) on the key session so the CDM will format a
license request from DRM initData, as specified in https://www.w3.org/TR/eme-initdata-
registry/ and https://www.w3.org/TR/eme-initdata-cenc/

Note that initData for ISOBMFF is specified as the payload of a ‘pssh’ box and represented in
a DASH manifest as an element containing a base64 encoded ‘pssh’ box and an attribute
equal to the SystemID of the DRM system. Although a ‘pssh’ box can be included in a file
header for each DRM system supported (useful for downloaded files without a manifest),
for streaming it is preferable to signal initData in the manifest, so it can be processed once
and the necessary licenses can be identified and downloaded in advance of attempting to
play the encrypted media.

5. Application forwards CDM formatted license request to a license server for the selected key
system, usually with an access token. A license server must encrypt a license or key with a
key bound to the CDM under test, so dynamic generation and download of licenses is
required during testing.

https://www.w3.org/TR/WebIDL-1/#idl-DOMString
https://www.w3.org/TR/WebIDL-1/#idl-sequence
https://www.w3.org/TR/2017/REC-encrypted-media-20170918/#dom-mediakeysystemconfiguration
https://www.w3.org/TR/2017/REC-encrypted-media-20170918/#dom-mediakeysystemconfiguration
https://www.w3.org/TR/WebIDL-1/#idl-DOMString
https://www.w3.org/TR/eme-initdata-registry/
https://www.w3.org/TR/eme-initdata-registry/
https://www.w3.org/TR/eme-initdata-cenc/

28

6. The downloaded license is sent to the CDM by the test runner using update(BufferSource
response).

7. The runner may need to create additional sessions and license requests for additional key
IDs used by other audio or video Switching Sets and start playback when all the necessary
keys have been updated on the CDM.

8 Single-Track Media Playback Requirements
8.1 Introduction and Content Model
This clause documents typical functionalities required by an application in the playback using a
source model as documented above for a single track.

A single CMAF track is assumed.

8.2 Sequential Track Playback
8.2.1 Background

Sequential track playback refers to the case that a CMAF/WAVE track is played from the
beginning by providing CMAF fragments to the source buffer after initialization.

8.2.2 Pre-condition

A CMAF Track is available for playback following the properties in clause 5.3.2.4 with the
earliest presentation time tf[k,i=1]=0.

A Media Source is established as defined in clause 6.2.

The capability discovery as defined in clause 6.4 using the parameters assigned to the track was
successful.

A Source Buffer is created as defined in clause 6.5, including the relevant output. This includes:

1) Appending the CMAF Header for the track.
2) Establishing a proper output environment.

8.2.3 Parameters and Variants

The playback has the following parameters:

• min_buffer_duration: expresses the minimum buffer that the Source Buffer
maintains in the playback.

• TSMax: The maximum permitted startup delay set to 120ms.
NOTE: This constraint is defined as a first approach but may be refined after
running some initial tests.

29

8.2.4 Stimulus

For a track buffer that supports a media profile, Sequential Playback of a CMAF Track k,
consisting of a sequence of CMAF Header and CMAF Fragments, refers to the following actions:

• Append the CMAF Header CH[k] to the Source Buffer.
• Set time offset to tf[k,i=1].
• Append CMAF Fragments CF[k,i] in order starting from i=1 .
• Load as many CMAF fragments CF[k,i] starting from fragment 1 such that the buffer

duration is at least min_buffer_duration.
• Once reached, initiate play-back on the media source and observe:

o The measured time when playback is initiated is Ti.

o The measured time when the first sample is rendered at time TR[k,s=1].

o The measured time when sample s is rendered is time TR[k,s].

• While it is not the last fragment, do:
o As soon as the buffer is min_buffer_duration or below, append next

fragment CF[k,i].
• Stop at the end of the last CMAF Fragment in the buffer.

8.2.5 Required Observation

8.2.5.1 General

If the above algorithm is carried out, the following observations are expected:

• Every sample S[k,s] shall be rendered and the samples shall be rendered in
increasing presentation time order.

• The playback duration of the playback matches the duration of the CMAF Track, i.e.
TR[k, S] = TR [k, 1] + td[k].

• The start-up delay should be sufficiently low, i.e., TR [k, 1] – Ti < TSMax.
• The presented sample matches the one reported by the currentTime value within

the tolerance of the sample duration.

8.2.5.2 Video

If the track is a video track, then:

• Every video frame S[k,s] shall be rendered such that it fills the entire video
output window.

8.2.5.3 Audio

None.

30

8.2.5.4 Subtitle

None.

8.3 Random Access to Fragment
8.3.1 Background

A track is randomly accessed, and playback is started from a specific time onwards.

The random access happens at a Fragment boundary.

8.3.2 Pre-condition

A CMAF Track is available for playback following the properties in clause 5.3.2.4 with the
earliest presentation time tf[k,i=1] = 0.

A Media Source is established as defined in clause 6.2.

The capability discovery as defined in clause 6.4 using the parameters assigned to the track was
successful.

A Source Buffer is created as defined in clause 6.5 including the relevant output. This includes:

1) Appending the CMAF Header for the track.
2) Establishing a proper output environment.

8.3.3 Parameters and Variants

The playback has the following parameters

• min_buffer_duration: expresses the minimum buffer that the Source Buffer
maintains in the playback.

• random_access_fragment: defines the fragment at which the track is
randomly accessed.

• TSMax: The maximum permitted startup delay set to 120ms.
NOTE: This constraint is defined as a first approach but may be refined after
running some initial tests.

8.3.4 Stimulus

For a track buffer that supports a media profile, Random Access of a CMAF Track k at fragment
random_access_fragment, consisting of a sequence of CMAF Header and CMAF
Fragments refers to the following actions:

• Append the CMAF Header CH[k] to the Source Buffer.
• Set time offset to tf[k,i= random_access_fragment].

31

• Append CMAF Fragments CF[k,i] in order starting from
i=random_access_fragment .

• Load as many CMAF fragments CF[k,i] starting from fragment
random_access_fragment such that the buffer duration is at least
min_buffer_duration.

• Once reached, initiate play-back on the media source and observe:
o The measured time when playback is initiated is Ti.
o The measured time when the first sample is rendered at time TR[k,s1].
o The measured time when sample s is rendered is time TR[k,s]

• While it is not the last fragment, do:
o As soon as the buffer is min_buffer_duration or below, append next

fragment CF[k,i].
• Stop the playback at the end of the last CMAF Fragment buffer.

8.3.5 Required Observation

8.3.5.1 General

If the above algorithm is carried out, the following observations are expected:

• Every sample S[k,s] shall be rendered and the samples shall be rendered in
increasing presentation time order.

• The playback duration of the playback matches the duration of the CMAF Track
starting from the presentation time of the first sample, i.e., TR[k, S] = TR [k,
s1] + td[k] - tf[k,i= random_access_fragment].

• The start-up delay should be sufficiently low, i.e., TR[k, s1] – Ti < TSMax
• The presented sample matches the one reported by the currentTime value

within the tolerance of the sample duration.

8.3.5.2 Video

If the track is a video track, then:

• Every video frame S[k,s] shall be rendered such that it fills the entire video
output window.

8.3.5.3 Audio

None.

8.3.5.4 Subtitle

None.

32

8.4 Random Access to Time
8.4.1 Background

A track is randomly accessed and played back, starting from a specific time onwards.

The random access in this case may occur in the middle of any Fragment.

8.4.2 Pre-condition

A CMAF Track is available for playback following the properties in clause 5.3.2.4 with the
earliest presentation time tf[k,i=1] = 0.

A Media Source is established as defined in clause 6.2.

The capability discovery as defined in clause 6.4 using the parameters assigned to the track was
successful.

A Source Buffer is created as defined in clause 6.5 including the relevant output. This includes:

1) Appending the CMAF Header for the track.
2) Establishing a proper output environment.

8.4.3 Parameters and Variants

The playback has the following parameters

• min_buffer_duration: Expresses the minimum buffer that the Source Buffer
maintains in the playback.

• random_access_time: Defines the presentation time at which the track is
randomly accessed.

• TSMax: The maximum permitted startup delay set to 120ms.
NOTE: This constraint is defined as the first approach but may be refined
after running some initial tests.

8.4.4 Stimulus

For a track buffer that supports a media profile, Random Access of a CMAF Track k at the
presentation time random_access_time, consisting of a sequence of CMAF Header and
CMAF Fragments refers to the following actions:

• Append the CMAF Header CH[k] to the Source Buffer.
• Find the Fragment number containing the presentation time

random_access_time: tk[k,r]≤ random_access_time and
tk[k,r+1]≥ random_access_time.

• Set time offset to random_access_time and set the currentTime on the
Media Element to the random_access_time.

• Append CMAF Fragments CF[k,i] in order starting from i=r.

33

• Load as many CMAF fragments CF[k,i] starting from fragment i such that the buffer
duration is at least min_buffer_duration.

• Once reached, initiate play-back on the media source and observe:
o The measured time when playback is initiated is Ti.
o The measured time when the first sample is rendered at time TR[k,s1].
o The measured time when sample s is rendered is time TR[k,s].

• While it is not the last fragment, do:
o As soon as the buffer is min_buffer_duration or below, append next

fragment CF[k,i].
• Stop the playback at the end of the last Fragment in buffer.

8.4.5 Required Observation

8.4.5.1 General

If the above algorithm is carried out, the following observations are expected:

• Every sample S[k,s] with presentation time larger or equal to
random_access_time shall be rendered and the samples shall be rendered in
increasing presentation time order.

• The playback duration of the playback matches the duration of the CMAF Track
starting from the presentation time of the first sample, i.e., TR[k, S] = TR[k,
s1] + td[k] - random_access_time.

• The start-up delay should be sufficiently low, i.e., TR[k, s1] – Ti < TSMax
• The presented sample matches the one reported by the currentTime value

within the tolerance of the sample duration.

8.4.5.2 Video

If the track is a video track, then:

• Every video frame S[k,s] shall be rendered such that it fills the entire video
output window.

8.4.5.3 Audio

None.

8.4.5.4 Subtitle

None.

34

8.5 Switching Set Playback
8.5.1 Background

Playback of a switching set assumes that the application can switch across the fragments of
different tracks without observing any temporal or spatial misalignment during playback.

8.5.2 Pre-Conditions

A CMAF Switching Set is available for playback following the properties in clause 5.3.2.4 with a
total of K tracks in the Switching Set.

A Media Source is established as defined in clause 6.2.

The capability discovery as defined in clause 6.4 using the parameters assigned to the track was
successful.

A Source Buffer is created as defined in clause 6.5 including the relevant output. This includes:

1) Appending the CMAF Master Header for the Switching Set.
2) Establishing a proper output environment.

8.5.3 Parameters and Variants

The playback has the following parameters

• min_buffer_duration: Expresses the minimum buffer that the Source Buffer
maintains in the playback.

• playout[i]: Provides the CMAF track number for every fragment position
i=1,…,N. The value shall be between 1 and K.

• TSMax: The maximum permitted startup delay set to 120ms.
NOTE: This constraint is defined as a first approach but may be refined after
running some initial tests.

8.5.4 Stimulus

For a track buffer that supports a media profile, playback of a Switching Set of a CMAF
Switching Set, consisting of K tracks, the following applies:

• Set the LastHeader to the CMAF Master Header CH* used in initialization
• Set presentation time offset to tf[k=playout[i=1],i=1].
• Load as many CMAF fragments CF[k,i] starting from fragment 1 such that the buffer

duration is at least min_buffer_duration using the Append-Algorithm-1, outlined
below.

• Once reached the min_buffer_duration, initiate play-back on the media source
and observe:

o The measured time when playback is initiated is Ti.

35

o The measured time when the first sample is rendered at time TR[s=1].
o The measured time when sample s is rendered is time TR[s].

• While it is not the last fragment, do:
o As soon as the buffer is equal to min_buffer_duration or below,

append next fragment CF[k,i] using Append-Algorithm-1, outlined below.
• Stop at the end of the last CMAF Fragment in the buffer.

Append-Algorithm-1:

• For each CMAF Fragment position i=1,…,N.
o If CMAF Header CH[k = playout[i]]!= LastHeader.

 Append the CMAF Header CH[k=playout[i]] to the Source Buffer
 Set LastHeader to CH[k=playout[i]].

o Append CMAF Fragment CF[k=playout[i],i].

8.5.5 Required Observation

8.5.5.1 General

If the above algorithm is carried out, the following observations are expected:

• Every sample S[k,s] shall be rendered and the samples shall be rendered in
increasing presentation time order.

• The duration of the playback matches the duration of the CMAF Track, i.e., TR[k, S] =
TR [k, 1] + td[k].

• The start-up delay should be sufficiently low, i.e., TR[k, 1] – Ti < TSMax
• The presented sample matches the one reported by the currentTime value

within the tolerance of the sample duration.

8.5.5.2 Video

In addition, for video the following is expected to be observed:

• The rendering for each track is scaled to the height and width of the predetermined
window.

• No visible shifts of objects in the video.
• No visible spatial offset of pixels in the video.

Based on this, if the track is a video track, then:

• Every video frame S[k,s] shall be rendered such that it fills the entire video
output window.

36

8.5.5.3 Audio

In addition, for audio the following is expected to be observed:

• The audio plays with no glitches, clicks or dropouts.

8.6 Regular Playback of Chunked Content
8.6.1 Background

Sequential Chunked Playback refers to the case that a CMAF/WAVE track is played from the
beginning by providing CMAF chunks to the source buffer after initialization.

8.6.2 Pre-condition

A CMAF Track is available for playback following the properties in clause 5.3.2.4 with the
earliest presentation time tf[k,i=1]=0.

A Media Source is established as defined in clause 6.2.

The capability discovery as defined in clause 6.4 using the parameters assigned to the track was
successful.

A Source Buffer is created as defined in clause 6.5 including the relevant output. This includes:

1) Appending the CMAF Header for the track.
2) Establishing a proper output environment.

8.6.3 Parameters and Variants

The playback has the following parameters:

• min_buffer_duration: expresses the minimum buffer that the Source Buffer
maintains in the playback. This value shall be smaller than df[k,i] of all
Fragments.

8.6.4 Stimulus

For a track buffer that supports a media profile, Sequential Chunked Playback of a CMAF Track
k, consisting of a sequence of CMAF Header and CMAF Chunks refers to the following actions:

• Append the CMAF Header CH[k] to the Source Buffer.
• Set time offset to tf[k,i=1].
• Append CMAF Chunk CC[k,i,j] in order starting from i=1, and j=1,

incrementing j first to the end and then incrementing i and resetting j=1, and so
on.

37

• Load as many CMAF Chunks CC[k,I,j] starting from the first Chunk of the track such
that the buffer duration is at least min_buffer_duration and not larger than or
equal to df[k,i=1].

• Once reached, initiate playback on the media source and observe:
o The measured time when playback is initiated is Ti.
o The measured time when the first sample is rendered at time TR[k,s=1].
o The measured time when sample s is rendered is time TR[k,s].

• While it is not the last fragment, do:
o As soon as the buffer is min_buffer_duration or below, append next

Chunk CC[k,i,j].
• Stop at the end of the last Chunk of track in the buffer .

8.6.5 Required Observation

8.6.5.1 General

If the above algorithm is carried out, the following observations are expected:

• Every sample S[k,s] shall be rendered and the samples shall be rendered in
increasing presentation time order.

• The playback duration matches the duration of the CMAF Track, i.e. TR [k, S] =
TR[k, 1] + td[k].

• The start-up delay should be sufficiently low, i.e. TR[k, 1] – Ti < TSMax.
• The presented sample matches the one reported by the currentTime value

within the tolerance of the sample duration.

8.6.5.2 Video

If the track is a video track, then:

• Every video frame S[k,s] shall be rendered such that it fills the entire video
output window.

8.6.5.3 Audio

None.

8.6.5.4 Subtitle

None.

38

8.7 Regular Playback of Chunked Content, non-aligned append
8.7.1 Background

Sequential Chunked Playback refers to the case that a CMAF/WAVE track is played from the
beginning by providing CMAF chunks to the source buffer after initialization. Non-aligned
refers to the situation where the data that is appended to the source buffer is appended
progressively in pieces that do not necessarily align with the boundaries of the CMAF chunks.

8.7.2 Pre-condition

A CMAF Track is available for playback following the properties in clause 5.3.2.4 with the
earliest presentation time tf[k,i=1]=0.

A Media Source is established as defined in clause 6.2.

The capability discovery as defined in clause 6.4 using the parameters assigned to the track was
successful.

A Source Buffer is created as defined in clause 6.5 including the relevant output. This includes:

1) Appending the CMAF Header for the track.
2) Establishing a proper output environment.

8.7.3 Parameters and Variants

The playback has the following parameters:

• min_buffer_duration: Expresses the minimum buffer that the Source Buffer
maintains in the playback. This value shall be smaller than df[k,i] of all
Fragments.

• TSMax: The maximum permitted startup delay set to 120ms.
NOTE: This constraint is defined as a first approach but may be refined after running
some initial tests.

8.7.4 Stimulus

For a track buffer that supports a media profile, Sequential Chunked Playback of a CMAF Track
k, consisting of a sequence of CMAF Header and CMAF Chunks refers to the following actions:

• Append the CMAF Header CH[k] to the Source Buffer.
• Set time offset to tf[k,i=1].
• For each k,i concatenate the N CMAF chunks CC[k,i,j] in order from j=1,

incrementing j to the end (j=N) to form a chunked fragment CF[k,i].
• For each k,i randomly choose 2N positive non-zero integers L such that the sum of all

L[k,i,r] equals the length in bytes of the chunked fragment CF[k,i].

39

• Split the chunked fragment CF[k,i] into 2N byte ranges BR[k,i,r] each with
length L[k,i,r].

• Append byte ranges BR[k,i,r] in order starting from i=1, and r=1, incrementing
r first to the end (2N) and then incrementing i and resetting r=1, and so on.

• Load as many byte ranges BR[k,i,r] starting from the first byte range of the track
such that the buffer duration is at least min_buffer_duration and not larger than
or equal to df[k,i=1].

• Once reached, initiate playback on the media source and observe:
o The measured time when playback is initiated is Ti.
o The measured time when the first sample is rendered at time TR[k,s=1].
o The measured time when sample s is rendered is time TR[k,s].

• While it is not the last byte range, do:
o As soon as the buffer is min_buffer_duration or below, append next

byte range BR[k,i,r].
• Stop at the end of the last byte range of track in the buffer.

8.7.5 Required Observation

8.7.5.1 General

If the above algorithm is carried out, the following observations are expected:

• Every sample S[k,s] shall be rendered and the samples shall be rendered in
increasing presentation time order.

• The playback duration matches the duration of the CMAF Track, i.e. TR[k, S] =
TR[k, 1] + td[k].

• The start-up delay should be sufficiently low, i.e. TR[k, 1] – Ti < TSMax.
• The presented sample matches the one reported by the currentTime value

within the tolerance of the sample duration.

8.7.5.2 Video

If the track is a video track, then

• Every video frame S[k,s] shall be rendered such that it fills the entire video
output window.

8.7.5.3 Audio

None.

8.7.5.4 Subtitle

None.

40

8.8 Playback over WAVE Baseline Splice Constraints
8.8.1 Background

Playback over splices enables the content provider to offer a sequence of Switching Sets with
less restricted encoding requirements than a track. This feature is especially important in case
of program changes and ad insertion.

8.8.2 Pre-conditions

Two CMAF Switching Sets are available for playback following the properties in clause5.3.3.5.

A Media Source is established as defined in clause 6.2.

The capability discovery as defined in clause 6.4 using the parameters assigned to the track was
successful.

A Source Buffer is created as defined in clause 6.5 including the relevant output. This includes:

• Appending the CMAF Master Header for the two Switching Sets.
• Establishing a proper output environment.

8.8.3 Parameters and Variants

The playback has the following parameters

• min_buffer_duration: Expresses the minimum buffer that the Source Buffer
maintains in the playback.

• playout[i]: Provides the triple (Switching Set, CMAF track number, Fragment
number) for every playout position i=1,…,N that is be played out.

8.8.4 Stimulus

For a track buffer that supports a media profile, playback of two WAVE Baseline Splice
Constraints Switching Sets of a CMAF Switching Set, consisting of K tracks, the following applies:

• Set the LastHeader to the CMAF Master Header CH* used in initialization.
• Set presentation time offset to tf[k=playout[i=1],i=1].
• Load as many CMAF fragments CF[k,i] starting from fragment 1 such that the buffer

duration is at least min_buffer_duration using the Append-Algorithm-2, outlined
below.

• Once reached the min_buffer_duration, initiate playback on the media source
and observe:

o The measured time when playback is initiated is Ti.
o The measured time when the first sample is rendered at time TR[s=1].

41

o The measured time when sample s is rendered is time TR[s].
• While it is not the last fragment, do:

o As soon as the buffer is equal to min_buffer_duration or below,
append next fragment CF[k,i] using Append-Algorithm-2, outlined below.

• Stop at the end of the last CMAF Fragment in the buffer.

Append-Algorithm-2:

• For each CMAF Fragment position i=1,…,N:
o If CMAF Header CH[k = playout[i]]!= LastHeader

 Append the CMAF Header CH[k=playout[i]] to the Source Buffer.
 Set LastHeader to CH[k=playout[i]].

o Append CMAF Fragment CF[k=playout[i],i].

8.8.5 Required Observations

8.8.5.1 General

If the above algorithm is carried out, the following observations are expected:

• Every sample S[k,s] shall be rendered and the samples shall be rendered in
increasing presentation time order.

• The playback duration matches the duration of the CMAF Track, i.e. TR[k, S] =
TR[k, 1] + td[k].

• The start-up delay should be sufficiently low, i.e., TR[k, 1] – Ti < TSMax
• The presented sample matches the one reported by the currentTime value

within the tolerance of the sample duration.

8.8.5.2 Video

If the track is a video track, then:

• Every video frame S[k,s] shall be rendered such that it fills the entire video
output window.

42

8.9 Out-Of-Order Loading
8.9.1 Background

Out of order loading refers to the case that a CMAF/WAVE track is played from the beginning
by providing CMAF fragments to the source buffer after initialization, but CMAF fragments are
loaded out of order within the buffer duration.

8.9.2 Pre-condition

A CMAF Track is available for playback following the properties in clause 5.3.2.4 with the
earliest presentation time tf[k,i=1]=0.

A Media Source is established as defined in clause 6.2.

The capability discovery as defined in clause 6.4 using the parameters assigned to the track was
successful.

A Source Buffer is created as defined in clause 6.5 including the relevant output. This includes:

1) Appending the CMAF Header for the track.
2) Establishing a proper output environment.

8.9.3 Parameters and Variants

The playback has the following parameters

• min_buffer_duration: Expresses the minimum buffer that the Source Buffer
maintains in the playback.

• max_buffer_duration: Expresses the duration of media that can always be
accommodated in the Source Buffer.

• loading[i]: Provides the CMAF Fragment number that is loaded at step i,
constrained such that (MAX(i-loading[i]) + MAX(loading[i]-i)) *
MAX(df[k,i]) < max_buffer_duration.

The parameters need be such that in any case the loaded CMAF Fragment needs to be in the
playout buffer.

8.9.4 Stimulus

For a track buffer that supports a media profile, Sequential Playback of a CMAF Track k,
consisting of a sequence of CMAF Header and CMAF Fragments refers to the following actions:

• Append the CMAF Header CH[k] to the Source Buffer.
• Set presentation time offset to tf[k,i=1].
• Append CMAF Fragments CF[k,loading[i]] in order starting from i=1.

43

• Load as many CMAF fragments CF[k,loading[i]] starting from index 1 such that
the contiguous buffered duration is at least min_buffer_duration.

• Once reached, initiate play-back on the media source and observe:
o The measured time when playback is initiated is Ti.
o The measured time when the first sample is rendered at time TR[k,s=1].
o The measured time when sample s is rendered is time TR[k,s].

• While it is not the last fragment, do:
o As soon as the contiguous buffered duration is min_buffer_duration or

below, append next fragment CF[k,loading[i]].
• Stop at the end of the last CMAF Fragment in the buffer.

8.9.5 Required Observation

8.9.5.1 General

If the above algorithm is carried out, the following observations are expected:

• Every sample S[k,s] shall be rendered and the samples shall be rendered in
increasing presentation time order.

• The playback duration of the playback matches the duration of the CMAF Track, i.e.,
TR[k, S] = TR[k, 1] + td[k].

• The start-up delay should be sufficiently low, i.e., TR[k, 1] – Ti < TSMax.
• The presented sample matches the one reported by the currentTime value

within the tolerance of the sample duration.

8.9.5.2 Video

If the track is a video track, then:

• Every video frame S[k,s] shall be rendered such that it fills the entire video
output window.

8.9.5.3 Audio

None.

8.9.5.4 Subtitle

None.

44

8.10 Overlapping Fragments
8.10.1 Background

Playback of overlapping fragments assumes that the application can overwrite the buffer with
other fragments. This is for example useful in case that a fragment is loaded in lower quality but
may then be replaced by a better-quality fragment.

8.10.2 Pre-condition

A CMAF Switching Set is available for playback following the properties in clause 5.3.2.5 with in
total K tracks in the Switching Set.

A Media Source is established as defined in clause 6.2.

The capability discovery as defined in clause 6.4 using the parameters assigned to the track was
successful.

A Source Buffer is created as defined in clause 6.5, including the relevant output. This includes:

1) Appending the CMAF Header for the track.
2) Establishing a proper output environment.

8.10.3 Parameters and Variants

The playback has the following parameters:

• min_buffer_duration: Expresses the minimum buffer that the Source Buffer
maintains during the playback. This value shall be equal or larger than
2*MAX(df[k,i]) for all i and k.

• playout[i]: Provides the CMAF track number for every fragment position
i=1,…,N. This value shall be between 1 and K.

8.10.4 Stimulus

For a track buffer that supports a media profile, Overlapped Fragment Playback of a CMAF
Switching Set, consisting of K tracks refers to the following actions, starting with k=1 for the
track with lowest quality to k=K with the highest quality:

• Set the LastHeader to the CMAF Master Header CH* used in initialization.
• Set presentation time offset to tf[k=playout[i=1],i=1].
• Load as many CMAF fragments CF[k,i] starting from fragment 1 such that the buffer

duration is at least min_buffer_duration using the Append-Algorithm-3, outlined
below.

• Once reached the min_buffer_duration, initiate play-back on the media source
and observe:

o The measured time when playback is initiated is Ti.

45

o The measured time when the first sample is rendered at time TR[s=1].
o The measured time when sample s is rendered is time TR[s].

• While it is not the last fragment, do:
o As soon as the buffer is equal to min_buffer_duration or below,

append next fragment CF[k,i] using Append-Algorithm-3, outlined below.
• Stop at the end of the last CMAF Fragment in the buffer.

Append-Algorithm-3:

• For each CMAF Fragment position i=1,…,N:
o If CMAF Header CH[k = playout[i]]!= LastHeader

 Append the CMAF Header CH[k=playout[i]] to the Source Buffer.
 Set LastHeader to CH[k=playout[i]].

o Append CMAF Fragments CF[k=playout[i],i-1] and
CF[k=playout[i],i].

8.10.5 Required Observation

8.10.5.1 General

If the above algorithm is carried out, the following observations are expected:

• Every sample S[k,s] shall be rendered and the samples shall be rendered in
increasing presentation time order.

• The playback duration matches the duration of the CMAF Track, i.e. TR[k, S] =
TR[k, 1] + td[k].

• The start-up delay should be sufficiently low, i.e. TR[k, 1] – Ti < TSMax.
• The presented sample matches the one reported by the currentTime value

within the tolerance of the sample duration.

8.10.5.2 Video

In addition, for video the following is expected to be observed:

• The rendering for each track is scaled to the height and width of the predetermined
window.

• No visible shifts of objects in the video.
• No visible spatial offset of pixels in the video.

Based on this, if the track is a video track, then:

• Every video frame S[k,s] shall be rendered such that it fills the entire video
output window.

46

8.10.5.3 Audio

In addition, for audio the following is expected to be observed:

• The audio plays with no glitches, clicks or dropouts.

8.10.5.4 Subtitle

None.

8.11 Full Screen Playback of Switching Sets
8.11.1 Background

Fullscreen playback ensures that the device provide proper scaling and letter boxing.

8.11.2 Pre-conditions

Same as documented in clause 8.9.2.

Output is set to fullscreen.

8.11.3 Parameters and Variants

Same as documented in clause 8.9.3.

8.11.4 Stimulus

Same as documented in clause 8.9.4.

8.11.5 Required Observations

8.11.5.1 General

If the above algorithm is carried out, the following observations are expected:

• Every sample S[k,s] shall be rendered and the samples shall be rendered in
increasing presentation time order.

• The playback duration matches the duration of the CMAF Track, i.e. TR[k, S] =
TR[k, 1] + td[k].

• The start-up delay should be sufficiently low, i.e. TR[k, 1] – Ti < TSMax
• The presented sample matches the one reported by the currentTime value

within the tolerance of the sample duration.

47

8.11.5.2 Video

If the track is a video track, then:

• Every video frame S[k,s] shall be rendered such that it fills the entire video
output window.

8.12 Playback of Encrypted Content
8.12.1 Introduction

Playback of encrypted content requires that a device under test contain a Content Decryption
Module (CDM) that performs two functions:

1. Decryption of media samples encrypted with Common Encryption (CENC) scheme ‘cenc’
or ‘cbcs’, followed by normal decoding and rendering equivalent to unencrypted
content.

2. Exchange of license requests and licenses containing keys between the CDM and a
license server, e.g., by the test runner through the W3C Encrypted Media Extension API
(EME). See 7.2.2.

Requesting and downloading a license is a function of a player or test runner and a license
server, not the Device under test. The test runner and license server are not being tested but
must function correctly to securely acquire keys that are cryptographically bound to the CDM
for the purpose of testing device decryption.

The security and functionality of the DRM system is considered out of the scope of WAVE tests,
other than to enable media decoding and rendering of encrypted content test cases. It is
assumed that each CDM is fully specified and implemented according to the requirements of
the DRM provider.

8.12.2 Encrypted Content Use Cases

8.12.2.1 Introduction

The following use cases combine four methods of key management with the other media
playback use cases and observations specified elsewhere in this document:

1. A single Track or Presentation with one key.

2. A single Presentation with different audio and video keys.

3. Multiple Presentations sequenced in a Program, encrypted and clear. One license, but
interspersed clear content, e.g. an encrypted show interspersed with unencrypted ads.

4. Multiple Presentations sequenced in a Program that require different licenses (“license
rotation”). Licenses must be downloaded and updated without interrupting playback.

48

The Playlist should include a license tags prior to the first dependent segment tag to
simulate just in time license processing.

Playback Observation: Playback observations SHALL equal the equivalent unencrypted test
case, except where DRM security requirements prohibit normal playback.

For instance, playback of UHD or HD content could be blocked or subsampled to lower
resolution on analog video interfaces or digital interfaces with too low an HDCP version
number. That is correct playback behavior under DRM control, given a device in a particular
system configuration with those license restrictions.

Tests, such as trick play, are valid for testing parser and CDM handling of encryption and key
changes out of sequence, but should test media pipeline functions, not the speed of license
acquisition from the test license server. The test runner will not respond to unidentified keys
found in content (by handling fired “need key” events and initiating license downloads), but
instead test playlists SHALL include tags instructing the test runner to download the necessary
keys in advance of their being needed for decryption.

WAVE tests are not defined at this time for “key rotation” and hierarchical licenses, which can
be stored in ‘pssh’ boxes in Fragments. Key rotation allows keys to change over time without
requiring a CDM-unique out of band license downloaded for each key change. Hierarchical
licenses also enable authorizing a channel, subscription, etc. with a single parent license that is
unique to each CDM but authorizes child licenses that are different for each piece of content
but readable by all CDMs, so can be broadcast in the content. These are currently considered
functions and tests covered by each DRM system.

8.12.2.2 Signaling Requirements and Capability Selection

A test playlist SHALL identify the encryption format applied and one or more DRM systems,
DRM initialization data, and license server locations able to provide the necessary decryption
keys.

The playlist encryption information SHALL match the default_KID and Common Encryption
scheme found in the Track Encryption Box (‘tenc’) in the CMAF Headers that follow it. If
different keys are used in different Switching Sets, i.e. different keys for audio and video, or SD,
HD, and UHD video, then the playlist SHALL identify the default_KID needed prior to the first
instance of appending a segment from that Switching Sets. Playlist tags are sequentially
processed, so the location of a license tag determines the relative timing of the license request
relative to a Header or segment request.

The test runner uses playlist tags to identify the encryption scheme used and DRM licenses
offered so the test runner can determine if a device can decrypt the signaled decryption
scheme (‘cenc’ or ‘cbcs’) and supports one of the listed DRM systems (e.g. Widevine, FairPlay,
or PlayReady). The test runner is expected to automatically query device DRM system
capability, and request licenses in a device supported DRM system. See Section 7, DRM
Protected Media.

49

The test runner is only expected to respond to tags in the playlist, not Header information such
as the sample entry or ‘tenc’ box, or Fragment information such as sample groups and their
descriptions. Headers, sample groups, and sample auxiliary information are used by the
device’s media pipeline to determine what scheme to decrypt with what keys and byte ranges
when fully parsing and processing the media. But the test runner only needs to parse the
playlist to fetch the correct license before appending dependent media segments.

The test runner and license server implement an authorization protocol for WAVE testing using
an access token or other means to directly authenticate the test runner and authorize license
downloads. The license server(s) maintain a secure key database indexed by KID so license
requests need not convey the keys in the license requests (typically done in real world
applications using JSON web tokens attached by Auth servers forwarding the license request to
the license server).

8.12.2.3 Playback Requirements

Devices SHALL decrypt at least one CENC scheme (‘cenc’ or ‘cbcs’) using at least one DRM
system.

Devices SHOULD support decryption and DRM capability discovery through the EME API or
similar native API.

Devices SHOULD indicate which encryption schemes and DRM systems are supported for each
Media Profile in the case where only some combinations of Media Profile, decryption scheme,
and DRM system are supported in combination. See 7.2.2.

8.12.3 Test Pre-condition

A CMAF Track is available for playback following the properties in clause 5.3.2.4. The track is
encrypted with Common Encryption 'cenc' or 'cbcs' encryption scheme and a key
identified by the key identifier default_KID. There is a license available for the track and a
license server. The device needs to include a CDM and APIs that a test runner can use to
negotiate a license with the license server as defined in clause 7.2.2.

A capability check for the specific encryption scheme is done and was successful, as defined in
clause 7.2.2.

A license suitable for the supported device capabilities is selected. A license is acquired and
available as defined in clause 7.2.2 before the Media Source is established.

A Media Source is established as defined in clause 6.2.

The media capability discovery as defined in clause 6.4 using the parameters assigned to the
track was successful.

A Source Buffer is created as defined in clause 6.5.

50

8.12.4 Parameters and Variants

The playback has the following parameters

• min_buffer_duration: expresses the minimum buffer that the Source Buffer
maintains in the playback.

• Encryption scheme (‘cenc’|’cbcs’) and default_KID.
• One or more DRM SystemID and InitData tags and a listed or known license server

URL.

8.12.5 Stimulus

After the necessary licenses are acquired and the secure media pipeline initialized:

For a track buffer that supports a media profile, Sequential Playback of a CMAF Track k,
consisting of a sequence of CMAF Header and CMAF Fragments refers to the following actions:

• Append the CMAF Header CH[k] to the Source Buffer.
• Set presentation time offset to 0.
• Append CMAF Fragments CH[i] in order starting from i=1.
• Load as many fragments starting from fragment 1 such that the buffer is at least

min_buffer_duration.
• Start-play time T1.

o The first sample is rendered at time T2.
• While it is not the last fragment, do:

o As soon as the buffer is min_buffer_duration or below, append the
next fragment.

• Stop at the end of the last fragment in the buffer.

8.12.6 Expected Observation

The playback is continuous and time-accurate.

No unnecessary startup delay, e.g., initializing a secure video path, negotiating a secure HDCP
display connection, etc.

Every sample shall be rendered and shall be rendered in order.

The playlist plays until the end.

The duration of playback matches the duration of the CMAF Presentation, i.e. Last frame is
presented at T2 + duration of the CMAF Track.

The rendering time report on the API matches the rendered sample.

51

8.13 Restricted Splicing of Encrypted Content
8.13.1 Conditions

Unencrypted samples and key changes SHALL be signaled by sample groups and sample group
descriptions in each Fragment that contain keys or encryption state different from the default
signaled in the ‘tenc’ box of the Master Header.

A Master Header for each Switching Set SHALL cause initialization of a media pipeline sufficient
to decrypt, decode, and display all Fragments that follow.

Multiple Track Switching Sets SHALL conform to CMAF single initialization constraints.

The test playlist SHALL request licenses with the necessary keys in advance.

Time discontinuities SHALL be signaled by a discontinuity tag, and the presentation time offset
set to the ‘tfdt’ BaseMediaDecodeTime.

8.13.2 Stimulus and Observation

 A test playlist SHALL first initialize a secure media pipeline for each media component, i.e. one
that includes a CDM and protected path in response to initializing decryption as defined in
clause 7.2.2.

One set of licenses based on the default_KID in each Master Header SHALL be downloaded and
SHALL be sufficient to decrypt the duration of the Program without additional license
downloads.

Common Encryption ‘seig’ sample groups SHALL be processed without interruption of the
secure media pipeline.

Playback Observation: The same as 8.12.

NOTE: Initialization and license downloading rely on the playlist and test runner.
Signaling of the encryption scheme, encryption options, subsample byte ranges, default
KID, sample group KID, initialization vectors, etc. are all signaled by Common Encryption
information in ISOBMFF boxes that enable decryption by a CDM and secure media
pipeline without reliance on the playlist or test runner (other than appending Headers at
splices where encryption changes).

8.14 Sequential Playback of Encrypted and Non-Encrypted Baseline Content
8.14.1 Conditions

Test vectors SHALL include a sequence of Presentations conforming to WAVE Baseline splice
constraints, including both encrypted and unencrypted Presentations using either ‘cenc’ or
‘cbcs’ scheme, but not both.

A test playlist SHALL append a Header and signal presentation time offset discontinuity at each
splice point between Presentations.

52

8.14.2 Stimulus and Observation

A test playlist SHALL first initialize a secure media pipeline for each media component, i.e. one
that includes a CDM and protected path in response to initializing decryption as defined in
clause 7.2.2.

Unencrypted Presentations SHALL be processed without reconfiguration of the secure media
pipeline, but splices SHALL include Header appends in the test playlist, i.e. changing between
encrypted and clear content as signaled by a ‘tenc’ box or the lack thereof, or change in the
default_KID, which requires a license tag to tell the runner to fetch a different license.

Playback Observation: The same as 8.12.

Note: Initialization and license downloading rely on the playlist and test runner. Signaling of the
encryption scheme, encryption options, subsample byte ranges, default KID, sample group KID,
initialization vectors, etc. are all signaled by Common Encryption information in ISOBMFF boxes
that enable decryption by a CDM and secure media pipeline without reliance on the playlist or
test runner (other than appending Headers at splices where encryption changes).

8.15 Source Buffer Re-Initialization
This test provides a stimulus in case that a source buffer needs to be re-established, for
example because of a codec change or a codec parameter change.

The first version of this specification does not define a test for this.

8.16 Playback Other than Real Time
8.16.1 Background

This test refers to the playback of content faster or slower than real-time, or even in reverse
direction. Content conforms even in different speed to the profile/level constraints of decoder.

There are three ways to do this:

• Play at X times as long as it is in the decoder profile/level constraint (app forwards all
content to the device and device plays with X times).

• Use special content (e.g., I-frame only content, to address any of these issues – and use
the above).

• Download key frames from regular content and feed those into the MSE source buffer.

The first version of this specification does not define a test for this.

53

8.17 Buffer Underrun and Recovery
8.17.1 Background

This case addresses if the buffer in play mode runs out of media and is recovering from this
situation. Different options are considered:

• Stall at fragment boundary and resume with next fragment (decoding order)
• Stall at chunk boundary and resume with next chunk
• Stall/Underrun, but continue with live timing (so basically in a loss)

o For fragment
o For chunk

The first version of this specification does not define a test for this.

8.18 Truncated Playback and Restart
8.18.1 Background

Playback can be stopped at an arbitrary presentation time within a CMAF fragment and
playback can be started with a new presentation seamlessly.

The first version of this specification does not define a test for this.

8.19 Long Duration Playback
8.19.1 Background

This requirement addresses the proper playback of a CMAF track over a longer time; in
particular, no drift in the playout occurs.

The first version of this specification does not define a test for this.

8.20 Event Message Processing
CTA WAVE content may contain event messages of relevance for the application.

The first version of this specification does not define a test for this.

9 WAVE Content Playback Requirements
9.1 Introduction
This clause deals with requirements of playback of WAVE Programs.

54

9.2 Regular Playback of a CMAF Presentation
9.2.1 Background

This case refers to the case for which a CMAF Presentation is provided and is played back. The
playback instructs the player to play multiple tracks, but at most one of each media type.

9.2.2 Pre-condition

A WAVE Presentation is available for playback following the properties in clause 5.3.3. The
WAVE Presentation has at least a Switching Set of type video and one of type audio. It may also
have subtitles. The earliest presentation time of the first CMAF Fragment in each track are
identical and are 0. The CMAF Presentation has a duration.

A Media Source is established as defined in clause 6.2.

For each media type:

• The capability discovery as defined in clause 6.4 using the parameters assigned to
the track was successful.

• A Source Buffer is created as defined in clause 6.5.

9.2.3 Parameters and Variants

The playback has the following parameters

• min_buffer_duration: expresses the minimum buffer that the Source Buffer
maintains in the playback.

9.2.4 Stimulus

For each source buffer an independent process is run.

Start play is done on the media source/element observe T1.

The first rendered sample is specific to the source buffer T2[s] with s source buffer index.

Stop play is done on the media source/element.

9.2.5 Expected Observation

9.2.5.1 General

The playback is continuous and time-accurate.

The duration of the playback matches the duration of the CMAF Presentation.

Every sample for every media type included in the CMAF Presentation duration shall be
rendered and shall be rendered in order.

55

The presentation starts with the earliest video sample and the audio sample that corresponds
to the same presentation time.

While continuing playback, the media samples of different tracks with the same presentation
times are presented jointly.

9.3 Random Access of a WAVE Presentation
9.3.1 Background

In scenarios such as live programs, the client accesses an ongoing Presentation to join in the live
event. This is a typical case that media needs to be accessed and played back at a random
access time.

9.3.2 Pre-condition

A WAVE Presentation is available for playback following the properties in clause 5.3.3. The
WAVE Presentation has at least a Switching Set (likely only one track) of type video and one of
type audio. The Presentation may also have subtitles. The earliest presentation time of the first
CMAF Fragment in each track are identical and are 0. The CMAF Presentation has a duration.

A Media Source is established as defined in clause 6.2.

For each media type

• The capability discovery as defined in clause 6.4 using the parameters assigned to
the track was successful.

• A Source Buffer is created as defined in clause 6.5.

9.3.3 Parameters and Variants

The playback has the following parameters

• min_buffer_duration: Expresses the minimum buffer that the Source Buffer
maintains in the playback.

• start_index_video: The CMAF Fragment number of the video track to start
with.

9.3.4 Stimulus

For each source buffer an independent process is run.

The td[start_index_video] is the decode time of the first video CMAF Fragment.

The first video CMAF Fragment to be appended is CF[start_index_video].

56

Pick the CMAF Fragment with largest index that has an earliest presentation time that is smaller
than or equal to the earliest presentation time of the CMAF Video fragment
CF[start_index_video].

Set the presentation time offset to td[start_index_video]?

Start play on Media Source Element.

9.3.5 Expected Observation

9.3.5.1 General

The playback is continuous and time-accurate.

The duration of the playback matches the duration of the CMAF Presentation.

Every sample for every media type included in the CMAF Presentation duration shall be
rendered and shall be rendered in order.

The presentation starts with the earliest video sample and the audio sample that corresponds
to the same presentation time.

While continuing playback, the media samples of different tracks with the same presentation
times are presented jointly.

9.4 Splicing of WAVE Program with Baseline Constraints
9.4.1 Background

Apps want to splice content that was properly conditioned based on the WAVE Program
Baseline Constraints. The expectation is that the device plays back these splices seamlessly.

9.4.2 Pre-condition

Two CMAF Presentations are available for playback following the properties in clause 5.3.3.
Each CMAF Presentation has at least a Switching Set (likely only one track) of type video and
one of type audio. The Presentation may also have subtitles. The earliest presentation time of
the first CMAF Fragment in each track are identical and are 0. The CMAF Presentation has a
duration.

The Adaptation Sets for a media type in each Presentation share a Common CMAF Header.

A Media Source is established as defined in clause 6.2.

For each media type:

• The capability discovery as defined in clause 6.4 using the parameters assigned to
the track was successful.

• A Source Buffer is created as defined in clause 6.5 using the Common Header.

57

A Media Source is established as defined in clause 6.2.

9.4.3 Parameters and Variants

The playback has the following parameters:

• min_buffer_duration: Expresses the minimum buffer that the Source Buffer
maintains in the playback.

• playout[i]: Provides the triple (Switching Set, CMAF track number, Fragment
number) for every playout position i=1,…,N that is be played out for every media
type.

9.4.4 Stimulus

For each source buffer an independent process is run.

The first video CMAF Fragment to be appended is CF[start_index_video].

Pick the CMAF Fragment with largest index that has an earliest presentation that is smaller than
or equal to the earliest presentation time of the CMAF Video fragment
CF[start_index_video].

Set the presentation time off set to td[start_index_video].

Start play on Media Source Element.

9.4.5 Expected Observation

9.4.5.1 General

The playback is continuous and time-accurate.

The duration of the playback matches the duration of the CMAF Presentation.

Every sample for every media type included in the CMAF Presentation duration shall be
rendered and shall be rendered in order.

The presentation starts with the earliest video sample and the audio sample that corresponds
to the same presentation time.

While continuing playback, the media samples of different tracks with the same presentation
times are presented jointly.

9.5 Joint Playback of Video and Subtitles
9.5.1 Background

This test specifies the joint playback of video and subtitles and the proper rendering.

No tests are defined for this feature in the first version of the specification.

58

10 Video Capabilities and Requirements
10.1 Introduction
The WAVE content specification [WAVE-CON] defines a set of WAVE Media Profiles for video.

Each video Media Profile has associated with it a specific video codec and a set of constraints
limiting parameters such as codec profile and level, maximum resolution, maximum frame rate,
colorimetry and so on.

Clause 10.2 defines the device playback requirements associated with the WAVE Media
Profiles.

10.2 Media Profiles
10.2.1 General

Content that conforms to a particular WAVE Media Profile may have any resolution within the
limits specified for that Media Profile.

Devices that support one or more Media Profiles that have a defined maximum resolution of
1920x1080 shall support the decoding and display of pictures with the resolutions listed below
for those Media Profiles. This does not preclude the use of other resolutions in WAVE content.
However, a limited number of resolutions are listed here to ease device testing.

Horizontal Vertical
1920 1080
1600 900
1280 720
1024 576
960 540
852 480
768 432
720 404
704 396
640 360
512 288
480 270
384 216
320 180
192 108

59

Devices that support one or more Media Profiles that have a defined maximum resolution of
3840x2160 shall support the decoding and display of pictures with the resolutions listed below
for those Media Profiles. This does not preclude the use of other resolutions in WAVE content.
However, a limited number of resolutions are listed here to ease device testing.

Horizontal Vertical
3840 2160
3200 1800
2560 1440
1920 1080
1600 900
1280 720
1024 576
960 540
852 480
768 432
720 404
704 396
640 360
512 288
480 270
384 216
320 180
192 108

Devices that support one or more Media Profiles that have a defined maximum frame rate of
60 Hz shall support the decoding and display of pictures with the following frame rates for
those Media Profiles. This does not preclude the use of other frame rates in WAVE content.
However, a limited number of frame rates are listed here to ease device testing:

• 6/1.001 Hz, 12/1.001 Hz and 24/1.001 Hz
• 6 Hz, 12 Hz, 24 Hz
• 6.25 Hz, 12.5 Hz, 25 Hz and 50 Hz
• 7.5/1.001 Hz, 15/1.001 Hz, 30/1.001 Hz and 60/1.001 Hz
• 7.5 Hz, 15 Hz, 30 Hz and 60 Hz

Devices shall support switching frame rates within each family listed above.

Devices supporting a particular Media Profile shall support all of the color coding and transfer
characteristics options defined for that Media Profile.

60

10.2.2 Media Profile: CMAF AVC HD ('cfhd')

10.2.2.1 Introduction

The media profile CMAF AVC HD is defined in [WAVE-CON], clause 4.2 and [CMAF].

10.2.2.2 Capability Discovery Options

A device supporting this media profile shall support at least one of the following capability
discovery mechanisms:

1) The “is supported type query” for the media profile with argument video/mp4
profile="cfhd" results in a yes.

2) The “is supported type query” for the codec with argument video/mp4
codec="XXX" or results in a yes with XXX defined in [WAVE-CON].

3) The playback can be started by a CMAF header that conforms to the media profile of
this specification.

10.2.2.3 Source Buffer Initialization Requirements

If no other video source buffer is available, then the device shall support the creation of a
source buffer with any of the following codecs parameters AS DEFINED IN [WAVE-CON], clause
4.2 for this profile.

10.2.2.4 Content Options

Support for this media profile implies that the device should support playback of content (as
defined in clause 10.2.2.5) for all content options enabled by the profile.

Support for this media profile implies that the device shall support playback of content (as
defined in clause 10.2.2.5) for all parameters suitable for this profile as defined in clause
10.2.1.

10.2.2.5 Playback Requirements

Support for this media profile implies that the device:

• Shall support the following playback requirements as documented in clause 8:

o 8.2 Sequential Track Playback
o 8.3 Random Access to Fragment
o 8.4 Random Access to Time
o 8.5 Switching Set Playback
o 8.6 Regular Playback of Chunked Content
o 8.7 Regular Playback of Chunked Content, non-aligned append
o 8.8 Playback over WAVE Baseline Splice Constraints

61

• Should support the following playback requirements as documented in clause 8:

o 8.9 Out-Of-Order Loading
o 8.10 Overlapping Fragments
o 8.11 Full Screen Playback of Switching Sets
o 8.12 Playback of Encrypted Content
o 8.13 Restricted Splicing of Encrypted Content

10.2.3 Conditions

o
o 8.14 Sequential Playback of Encrypted and Non-Encrypted Baseline Content

10.2.4 Media Profile: CMAF HEVC HHD10 ('chh1')

The details for this profile will be added to an updated version of the specification after a
questionnaire to the media profile proponents.

10.2.5 Media Profile: CMAF HEVC UHD10 ('cud1')

The details for this profile will be added to an updated version of the specification after a
questionnaire to the media profile proponents.

10.2.6 Media Profile: CMAF HEVC HDR10 ('chd1')

The details for this profile will be added to an updated version of the specification after a
questionnaire to the media profile proponents.

10.2.7 Media Profile: CMAF HEVC HLG10 ('clg1')

The details for this profile will be added to an updated version of the specification after a
questionnaire to the media profile proponents.

10.3 Cross-Media Profile Video Splice Playback Requirements
This version of the specification does not define any splice requirements for the playback of
two non-conforming media profiles.

11 Audio Capabilities and Requirements
11.1 General
The details for audio profiles will be added to an updated version of the specification after a
questionnaire to the media profile proponents.

62

11.2 Media Profiles
The details for this profile will be added to an updated version of the specification after a
questionnaire to the media profile proponents.

11.3 Cross-Media Profile Audio Splice Playback Requirements
This version of the specification does not define any splice requirements for the playback of
two non-conforming media profiles.

12 Subtitle Capabilities and Requirements
12.1 Introduction
The details for this profile will be added to an updated version of the specification after a
questionnaire to the media profile proponents.

13 Other Device Playback Requirements
This version of the specification does not define any additional playback requirements beyond
media profile playback. In the future this may for example define requirements on supporting
certain graphics overlays, protocol versions of HTTP, etc.

14 Device Core Profiles
14.1 Introduction
A device core profile defines a set of playback and other requirements that must be supported
by a device to claim conformance against a device core profile.

This first version of the specification does not define a device core profile.

15 Device Extension Profiles
15.1 Introduction
A device extension profile defines a set of playback and other requirements that must be
supported by a device to claim conformance against a device extension profile.

A device extension profile assumes that at least one device core profile is supported.

This first version of the specification does not define a device core profile.

63

16 Configurations
16.1 Introduction
Configurations are requirements for devices. A device shall support at least one of any of the
defined configurations.

16.2 Encryption
16.2.1 Configuration Options

A WAVE device shall support at least one of the two encryption modes: “cenc” or “cbcs”.

A WAVE device should support both encryption modes: “cenc” and “cbcs”.

16.2.2 Capability Discovery

Capability discovery for encryption configuration is for further study.

16.2.3 Playback Requirements

Please refer to clause 7.

64

Annex A: Device Capability Discovery (Informative)
A.1. General
The application needs to determine if it can playback the offered content following the
requirements of this specification.

It is important to assume that the content is properly labelled (through media profile identifier
and other indicators) and formatted according to the controlling specifications, primarily the
WAVE content specification [WAVE-CON].

Labeling of the content may for example be done through one or more of the following means:

• A WAVE content signaling as defined in the content specification.
• The Internet media type of the defined in RFC6381 including the profile and codecs

parameter
• Signaling of the content in the manifest, for example in the DASH-MPD using Adaptation

Set signaling, predominantly the @mimeType and @codecs parameter.
• The signaling in the CMAF Header, specifically:

o the compatibility brands in the ftyp box, and
o The information of the sample description box in the CMAF Header.

Note that the information may be duplicated on different levels.

For each media profile, the signaling requirements are provided in the WAVE content
specification.

This specification provides means on how to use content signaling for capability discovery.

Some options:

• HTMLMediaElement.canPlayType to determine if a mimetype/codec is
supported.

• SourceBuffer can be created to handle the media type we are interested in, so
we should be using MediaSource.isTypeSupported.

A.2. Capability Discovery Options (not about signaling)
This section discusses options that were considered during the development of this
specification that may or may not be available or may be available as a proprietary solution or
arrangement.

65

A.2.1. Media Profile

The application uses the media profile for capability discovery. The media profile may for
example be provided in the manifest or the CMAF Header in the ftyp box. The application
queries the device of the media profile using the isSupportedType() API if it can be
played back using:

• <mediatype>/mp4 profile="<media profile 4CC>"

The device may provide one of the following answers:

• Yes: If yes is provided, then the playback requirements for this media profile as
documented in this specification are expected to be fulfilled.

• No: If no is provided, then the playback of the media profile is not supported by the
device and the application shall not playback this media profile.

• unknown: In this case the application should find other options to identify if the media
profile can be played back.

Note that the media profile does not support the configuration signaling and requires an
additional capability mechanism on which configuration is preferably used.

A.2.2. CMAF Header

In this case an API between the app and the platform exists, such that the application queries
the device if the content described in the CMAF header can be played back. This has the
advantages of being complete, accurate, future-proof, but the drawback of not being human
readable and possibly requires transmitting more information than the other approaches.

Again, the device may provide one of the following answers:

• Yes: If yes is provided, then the playback requirements for this media profile as
documented in this specification are expected to be fulfilled.

• No: If no is provided, then the playback of the media profile is not supported by the
device and the application shall not playback this media profile.

• unknown: In this case the application should find other options to identify if the media
profile can be played back.

If a no or an unknown is provided, the response should provide an indication based on what
feature the device rejected the playback.

A.2.3. MIME Subparameters

This option consists in using one or more MIME sub-parameters to describe the different
required capabilities (pre-decoding, decoding, and post-decoding). It is the mostly used options

66

today because it has the advantages of enabling a progressive, detailed, compact and almost
human readable signaling.

Post-decoding requirements are indicated in the ISO base media file format with restricted
schemes. For example, the 'resv' sample entry type can be used for video tracks that require
certain post-decoding operations. Similarly, pre-decoding requirements are indicated in the ISO
base media file format with the protected scheme.

In this case, the application uses the detailed MIME type string for the communication with the
device platform. The application queries the device of the media profile can be played back
using:

• <mediatype>/mp4 mime-subparameters

 The device may provide one of the following answers:

• Yes: If yes is provided, then the playback requirements for this media profile as
documented in this specification are expected to be fulfilled.

• No: If no is provided, then the playback of the media profile is not supported by the
device and the application shall not playback this media profile.

• unknown: In this case the application should find other options to identify if the media
profile can be played back.

If a no or an unknown is provided, the response should provide an indication based on what
feature the device rejected the playback.

A.2.4. Media Capabilities

Aligned with the Media Capabilities API2, APIs exposing information about the decoding and
encoding capabilities of a device platform for a given format, but also output capabilities of the
current device to find the best match based on the device’s display may be used. The
application would query a vector of capabilities and if all required capabilities are supported,
then the playback may be initiated.

A.2.5. Device Capability – Persistent Item Solution

Another approach is to standardized device capabilities in a known format for storage by the
manufacturer and recall in some manner available to the application. The preferred approach
uses standardizes key-value pairs for relevant player characteristics that can be communicated
to servers via JavaScript APIs or Objects. One option is to use the HTTP User Agent String as
described in [HBBTV] 7.3.2.4.

2 https://wicg.github.io/media-capabilities/

https://wicg.github.io/media-capabilities/

67

A.2.6. User Agent String

The approach can provide something that can be deployed on devices where the new media
capabilities API (or some future derivative) isn't supported. Typically, when integrating a
browser on to a device, the HTTP User Agent is something that can be set by the device vendor
/ integrator without changing the code of the browser.

The user agent string would indicate which WAVE media profiles are supported in the HTTP UA.
One example of how this could be done would be to include 3 bit-fields, one each for video,
audio and captions/subtitles. Each would have one bit for each WAVE media profile with '1'
indicating supported and '0' indicating not supported. HTML pages can read the HTTP User
Agent string via the Navigator.userAgent property.

The strengths of this specific proposal (relative to others) are:

• Simplicity.
• Ease of integration for device makers/integrators due to not needing changes to the

browser code.
• Something WAVE specific can also indicate support for WAVE device playback

requirements and not "just" some support for the codec (which can be tested via
isTypeSupported and/or canPlayType).

The weaknesses of this specific proposal (relative to others) are:

• Generic hostility to using the UA string.
• The ease with which it can be faked.
• Does not expose the same level of detail as the media capabilities API such as "smooth"

and “powerEfficient”.
• More work would be needed to quantify how much added value it has over

isTypeSupported / canPlayType in practice.

There are also of course issues common to other approaches:

• That they do not expose support for options within a WAVE media profile
concerns that exposing the supported media profiles can be used in combination with
other information to identify / track the user.

A.2.7. WAVE Playback Capabilities

Finally, there may be defined a dedicated capability code for the platform that matches against
the full requirements in this specification. While such an approach may provide the most
stringent interoperability, at the same time adding yet another option to the already complex
world of capability signaling was dispensed during the development of this specification.

68

A.2.8. Rendering and Display Capabilities

For the case when remotely connected displays are used, the display capabilities (or audio
rendering system) needs to be discovered from the user agent. It is unclear if this is possible in
general and what the limitations are. May be a question towards HTML 5 API.

Discussion on HDMI details are for further study.

A.3. Recommendations for Capability Discovery APIs
Based on the discussions in clause 6.2.2, it is recommended that new devices support one of
the following two API structures:

• Media Profile capability API as defined in clause 6.2.2.1. However, this requires an
additional signaling for identifying configuration options.

• CMAF header API as defined in clause 6.2.2.2. However, this requires an additional
signaling for identifying configuration options.

In both cases, if there is a YES response to the capability, the device shall support the playback
requirements defined in this specification for a specific media profile. If the device responds
with a no, then it should indicate what capabilities are not supported.

However, devices may not implement either of these two capability APIs, the response of the
device for such an API may be unknown and in particular existing devices may not support
such an API at all. If a media profile wants to enable playback on devices that do not support
one of the two APIs as recommended above, then it is recommended that the media profile
documents other means for capability detection for such a media profile, in particular using one
of the following:

• MIME Subparameters as documented in clause 6.2.2.3
• Media Capability approach as documented in clause 6.2.2.4

Each media profile should provide sufficient information on how to use APIs for capability
discovery in order to ensure the playback of the media profile following the requirements in
this specification. Specifically, suitable capability discovery for existing devices is recommended
to be added.

69

Annex B: Relevant HTML 5 APIs (Informative)
B.1 General
This clause documents the HTML 5 APIs that are relevant for the purpose to implement the
high-level tests as defined in this specification.

B.2 Relevant Web Media APIs
The following APIs are relevant and their existence is assumed when implementing the
tests based on an HTML 5 platform. The exact mapping will be addressed in a future
version of the specification.

• HTMLMediaElement
- Properties

i. HTMLMediaElement.buffered - OBSERVATION - returns a TimeRanges object
that indicates the ranges of the media source that the browser has buffered
(if any) at the moment the buffered property is accessed.

ii. HTMLMediaElement.currentTime - OBSERVATION INPUT - is a double
indicating the current playback time in seconds. Setting this value seeks the
media to the new time.

- Methods
i. HTMLMediaElement.fastSeek() - INPUT - directly seeks to the given time.

ii. HTMLMediaElement.pause() - INPUT - pauses the media playback.
iii. HTMLMediaElement.play() - INPUT - begins playback of the media.

Other properties and methods are available as follows:
• HTMLMediaElement

- Properties
i. HTMLMediaElement.defaultPlaybackRate - OBSERVATION INPUT - is a double

indicating the default playback rate for the media.
ii. HTMLMediaElement.duration - OBSERVATION - returns a double indicating

the length of the media in seconds, or 0 if no media data is available.
iii. HTMLMediaElement.initialTime - OBSERVATION - returns a double that

indicates the initial playback position in seconds.
iv. HTMLMediaElement.mediaKeys - OBSERVATION INPUT - returns a

MediaKeys object or null. MediaKeys is a set of keys that an associated
HTMLMediaElement can use for decryption of media data during playback.

v. HTMLMediaElement.muted - OBSERVATION INPUT - is a Boolean that
determines whether audio is muted. true if the audio is muted and false
otherwise.

vi. HTMLMediaElement.paused - OBSERVATION - returns a Boolean that
indicates whether the media element is paused.

vii. HTMLMediaElement.playbackRate - is a double that indicates the rate at
which the media is being played back.

70

viii. HTMLMediaElement.played - OBSERVATION - returns a TimeRanges object
that contains the ranges of the media source that the browser has played, if
any.

ix. HTMLMediaElement.preservesPitch - OBSERVATION INPUT - is a Boolean
that determines if the pitch of the sound will be preserved.

x. HTMLMediaElement.seekable - OBSERVATION - returns a TimeRanges object
that contains the time ranges that the user is able to seek to, if any.

xi. HTMLMediaElement.volume - OBSERVATION INPUT - is a double indicating
the audio volume, from 0.0 (silent) to 1.0 (loudest).

xii. HTMLVideoElement.height - OBSERVATION INPUT - Is a DOMString that
reflects the height HTML attribute, which specifies the height of the display
area, in CSS pixels.

xiii. HTMLVideoElement.width - OBSERVATION INPUT - Is a DOMString that
reflects the width HTML attribute, which specifies the width of the display
area, in CSS pixels.

xiv. HTMLVideoElement.videoHeight - OBSERVATION - returns an unsigned long
containing the intrinsic height of the resource in CSS pixels, taking into
account the dimensions, aspect ratio, clean aperture, resolution, and so
forth, as defined for the format used by the resource.

xv. HTMLVideoElement.videoWidth - OBSERVATION - returns an unsigned long
containing the intrinsic width of the resource in CSS pixels, taking into
account the dimensions, aspect ratio, clean aperture, resolution, and so
forth, as defined for the format used by the resource.

• MediaSource

- Properties
i. MediaSource.sourceBuffers – OBSERVATION - returns a SourceBufferList

object containing the list of SourceBuffer objects associated with this
MediaSource.

ii. MediaSource.activeSourceBuffers - OBSERVATION - returns a
SourceBufferList object containing a subset of the SourceBuffer objects
contained within SourceBuffers — the list of objects providing the selected
video track, enabled audio tracks, and shown/hidden text tracks.

iii. MediaSource.readyState – OBSERVATION - returns an enum representing the
state of the current MediaSource, whether it is not currently attached to a
media element (closed), attached and ready to receive SourceBuffer objects
(open), or attached but the stream has been ended via
MediaSource.endOfStream().

iv. MediaSource.duration – OBSERVATION INPUT - the duration of the media
that is playing

- Methods
i. MediaSource.addSourceBuffer() - INPUT - creates a new SourceBuffer of the

given MIME type and adds it to the MediaSource's SourceBuffers list.

71

ii. MediaSource.removeSourceBuffer() – INPUT - removes the given
SourceBuffer from the SourceBuffers list associated with this MediaSource
object.

iii. MediaSource.endOfStream() – INPUT - signals the end of stream.

Consumer Technology Association Document Improvement Proposal

If in the review or use of this document a potential change is made evident for safety, health or
technical reasons, please email your reason/rationale for the recommended change to
standards@CTA.tech.

Consumer Technology Association
Technology & Standards Department

1919 S Eads Street, Arlington, VA 22202
FAX: (703) 907-7693 standards@CTA.tech

	Table of Contents
	1 Scope 1
	2 References 1
	2.1 Normative References 1
	2.2 Informative References 1
	3 Document Notation and Conventions 2
	4 Acronyms 3
	5 Architecture and WAVE Device Reference Model 4
	5.1 WAVE Architecture 4
	5.2 WAVE Device Playback Reference Model 5
	5.2.1 Overview 5
	5.2.2 Wave Device Platform APIs 8
	5.2.3 Web Media API-based Playback Model 9
	5.3 WAVE Content 9
	5.3.1 Overview 9
	5.3.2 CMAF Content Model 10
	5.3.3 WAVE Content Model 13
	5.3.4 Content Model Format 14
	5.4 Scope of This Specification 15
	5.4.1 Introduction 15
	5.4.2 Conformance Aspects and Interoperability 15
	5.4.3 Tests, Performance and Performance Requirements 16
	5.4.4 Existing and New Devices 16
	6 Media Playback Model 16
	6.1 Introduction 16
	6.2 Media Element and Source Establishment 17
	6.2.1 General 17
	6.2.2 Web Media API-based Media Element and Source Establishment 17
	6.3 Media Element and Media Source Control 18
	6.3.1 General 18
	6.3.2 Web Media API-based Media Element and Media Source Control 18
	6.4 Device Capability 18
	6.4.1 General 18
	6.4.2 Web Media API-based Capability Discovery 19
	6.5 Source Buffer Management 20
	6.5.1 General 20
	6.5.2 Web Media API-based Source Buffer Management 21
	6.6 Device Playback Model for a Single Source Buffer 21
	6.6.1 Introduction 21
	6.6.2 General 22
	6.6.3 Web Media API-based Playback 24
	6.7 Device Playback Model for a Media Element 24
	6.7.1 General 24
	6.7.2 Web Media API-based Playback 24
	7 DRM Protected Media 25
	7.1 Introduction 25
	7.2 Media Profiles and Encryption Schemes 26
	7.2.1 Introduction 26
	7.2.2 License Acquisition using the EME API 27
	8 Single-Track Media Playback Requirements 28
	8.1 Introduction and Content Model 28
	8.2 Sequential Track Playback 28
	8.2.1 Background 28
	8.2.2 Pre-condition 28
	8.2.3 Parameters and Variants 28
	8.2.4 Stimulus 29
	8.2.5 Required Observation 29
	8.3 Random Access to Fragment 30
	8.3.1 Background 30
	8.3.2 Pre-condition 30
	8.3.3 Parameters and Variants 30
	8.3.4 Stimulus 30
	8.3.5 Required Observation 31
	8.4 Random Access to Time 32
	8.4.1 Background 32
	8.4.2 Pre-condition 32
	8.4.3 Parameters and Variants 32
	8.4.4 Stimulus 32
	8.4.5 Required Observation 33
	8.5 Switching Set Playback 34
	8.5.1 Background 34
	8.5.2 Pre-Conditions 34
	8.5.3 Parameters and Variants 34
	8.5.4 Stimulus 34
	8.5.5 Required Observation 35
	8.6 Regular Playback of Chunked Content 36
	8.6.1 Background 36
	8.6.2 Pre-condition 36
	8.6.3 Parameters and Variants 36
	8.6.4 Stimulus 36
	8.6.5 Required Observation 37
	8.7 Regular Playback of Chunked Content, non-aligned append 38
	8.7.1 Background 38
	8.7.2 Pre-condition 38
	8.7.3 Parameters and Variants 38
	8.7.4 Stimulus 38
	8.7.5 Required Observation 39
	8.8 Playback over WAVE Baseline Splice Constraints 40
	8.8.1 Background 40
	8.8.2 Pre-conditions 40
	8.8.3 Parameters and Variants 40
	8.8.4 Stimulus 40
	8.8.5 Required Observations 41
	8.9 Out-Of-Order Loading 42
	8.9.1 Background 42
	8.9.2 Pre-condition 42
	8.9.3 Parameters and Variants 42
	8.9.4 Stimulus 42
	8.9.5 Required Observation 43
	8.10 Overlapping Fragments 44
	8.10.1 Background 44
	8.10.2 Pre-condition 44
	8.10.3 Parameters and Variants 44
	8.10.4 Stimulus 44
	8.10.5 Required Observation 45
	8.11 Full Screen Playback of Switching Sets 46
	8.11.1 Background 46
	8.11.2 Pre-conditions 46
	8.11.3 Parameters and Variants 46
	8.11.4 Stimulus 46
	8.11.5 Required Observations 46
	8.12 Playback of Encrypted Content 47
	8.12.1 Introduction 47
	8.12.2 Encrypted Content Use Cases 47
	8.12.3 Test Pre-condition 49
	8.12.4 Parameters and Variants 50
	8.12.5 Stimulus 50
	8.12.6 Expected Observation 50
	8.13 Restricted Splicing of Encrypted Content 51
	8.13.1 Conditions 51
	8.13.2 Stimulus and Observation 51
	8.14 Sequential Playback of Encrypted and Non-Encrypted Baseline Content 51
	8.14.1 Conditions 51
	8.14.2 Stimulus and Observation 52
	8.15 Source Buffer Re-Initialization 52
	8.16 Playback Other than Real Time 52
	8.16.1 Background 52
	8.17 Buffer Underrun and Recovery 53
	8.17.1 Background 53
	8.18 Truncated Playback and Restart 53
	8.18.1 Background 53
	8.19 Long Duration Playback 53
	8.19.1 Background 53
	8.20 Event Message Processing 53
	9 WAVE Content Playback Requirements 53
	9.1 Introduction 53
	9.2 Regular Playback of a CMAF Presentation 54
	9.2.1 Background 54
	9.2.2 Pre-condition 54
	9.2.3 Parameters and Variants 54
	9.2.4 Stimulus 54
	9.2.5 Expected Observation 54
	9.3 Random Access of a WAVE Presentation 55
	9.3.1 Background 55
	9.3.2 Pre-condition 55
	9.3.3 Parameters and Variants 55
	9.3.4 Stimulus 55
	9.3.5 Expected Observation 56
	9.4 Splicing of WAVE Program with Baseline Constraints 56
	9.4.1 Background 56
	9.4.2 Pre-condition 56
	9.4.3 Parameters and Variants 57
	9.4.4 Stimulus 57
	9.4.5 Expected Observation 57
	9.5 Joint Playback of Video and Subtitles 57
	9.5.1 Background 57
	10 Video Capabilities and Requirements 58
	10.1 Introduction 58
	10.2 Media Profiles 58
	10.2.1 General 58
	10.2.2 Media Profile: CMAF AVC HD ('cfhd') 60
	10.2.3 Media Profile: CMAF HEVC HHD10 ('chh1') 61
	10.2.4 Media Profile: CMAF HEVC UHD10 ('cud1') 61
	10.2.5 Media Profile: CMAF HEVC HDR10 ('chd1') 61
	10.2.6 Media Profile: CMAF HEVC HLG10 ('clg1') 61
	10.3 Cross-Media Profile Video Splice Playback Requirements 61
	11 Audio Capabilities and Requirements 61
	11.1 General 61
	11.2 Media Profiles 62
	11.3 Cross-Media Profile Audio Splice Playback Requirements 62
	12 Subtitle Capabilities and Requirements 62
	12.1 Introduction 62
	13 Other Device Playback Requirements 62
	14 Device Core Profiles 62
	14.1 Introduction 62
	15 Device Extension Profiles 62
	15.1 Introduction 62
	16 Configurations 63
	16.1 Introduction 63
	16.2 Encryption 63
	16.2.1 Configuration Options 63
	16.2.2 Capability Discovery 63
	16.2.3 Playback Requirements 63
	Annex A: Device Capability Discovery (Informative) 64
	A.1. General 64
	A.2. Capability Discovery Options (not about signaling) 64
	A.2.1. Media Profile 65
	A.2.2. CMAF Header 65
	A.2.3. MIME Subparameters 65
	A.2.4. Media Capabilities 66
	A.2.5. Device Capability – Persistent Item Solution 66
	A.2.6. User Agent String 67
	A.2.7. WAVE Playback Capabilities 67
	A.2.8. Rendering and Display Capabilities 68
	A.3. Recommendations for Capability Discovery APIs 68
	Annex B: Relevant HTML 5 APIs (Informative) 69
	B.1 General 69
	B.2 Relevant Web Media APIs 69
	Table of Figures
	Forward
	1 Scope
	2 References
	2.1 Normative References
	2.2 Informative References

	3 Document Notation and Conventions
	4 Acronyms
	5 Architecture and WAVE Device Reference Model
	5.1 WAVE Architecture
	5.2 WAVE Device Playback Reference Model
	5.2.1 Overview
	5.2.2 Wave Device Platform APIs
	5.2.2.1 Introduction
	5.2.2.2 Control API
	5.2.2.3 Media API
	5.2.2.4 Video and Audio Output

	5.2.3 Web Media API-based Playback Model

	5.3 WAVE Content
	5.3.1 Overview
	5.3.2 CMAF Content Model
	5.3.2.1 Overview
	5.3.2.2 CMAF Addressable Objects
	5.3.2.3 CMAF presentation timing model
	5.3.2.4 CMAF Track Model for this Specification
	5.3.2.5 CMAF Switching Set Model for this Specification

	5.3.3 WAVE Content Model
	5.3.3.1 Overview
	5.3.3.2 WAVE Presentations and Programs
	5.3.3.3 WAVE Splice Constraints
	5.3.3.4 WAVE Continuous Switching Sets
	5.3.3.5 WAVE Splice Conditioned Switching Sets

	5.3.4 Content Model Format

	5.4 Scope of This Specification
	5.4.1 Introduction
	5.4.2 Conformance Aspects and Interoperability
	5.4.3 Tests, Performance and Performance Requirements
	5.4.4 Existing and New Devices

	6 Media Playback Model
	6.1 Introduction
	6.2 Media Element and Source Establishment
	6.2.1 General
	6.2.2 Web Media API-based Media Element and Source Establishment

	6.3 Media Element and Media Source Control
	6.3.1 General
	6.3.2 Web Media API-based Media Element and Media Source Control

	6.4 Device Capability
	6.4.1 General
	6.4.2 Web Media API-based Capability Discovery

	6.5 Source Buffer Management
	6.5.1 General
	6.5.2 Web Media API-based Source Buffer Management

	6.6 Device Playback Model for a Single Source Buffer
	6.6.1 Introduction
	6.6.2 General
	6.6.3 Web Media API-based Playback

	6.7 Device Playback Model for a Media Element
	6.7.1 General
	6.7.2 Web Media API-based Playback

	7 DRM Protected Media
	7.1 Introduction
	7.2 Media Profiles and Encryption Schemes
	7.2.1 Introduction
	7.2.2 License Acquisition using the EME API

	8 Single-Track Media Playback Requirements
	8.1 Introduction and Content Model
	8.2 Sequential Track Playback
	8.2.1 Background
	8.2.2 Pre-condition
	8.2.3 Parameters and Variants
	8.2.4 Stimulus
	8.2.5 Required Observation
	8.2.5.1 General
	8.2.5.2 Video
	8.2.5.3 Audio
	8.2.5.4 Subtitle

	8.3 Random Access to Fragment
	8.3.1 Background
	8.3.2 Pre-condition
	8.3.3 Parameters and Variants
	8.3.4 Stimulus
	8.3.5 Required Observation
	8.3.5.1 General
	8.3.5.2 Video
	8.3.5.3 Audio
	8.3.5.4 Subtitle

	8.4 Random Access to Time
	8.4.1 Background
	8.4.2 Pre-condition
	8.4.3 Parameters and Variants
	8.4.4 Stimulus
	8.4.5 Required Observation
	8.4.5.1 General
	8.4.5.2 Video
	8.4.5.3 Audio
	8.4.5.4 Subtitle

	8.5 Switching Set Playback
	8.5.1 Background
	8.5.2 Pre-Conditions
	8.5.3 Parameters and Variants
	8.5.4 Stimulus
	8.5.5 Required Observation
	8.5.5.1 General
	8.5.5.2 Video
	8.5.5.3 Audio

	8.6 Regular Playback of Chunked Content
	8.6.1 Background
	8.6.2 Pre-condition
	8.6.3 Parameters and Variants
	8.6.4 Stimulus
	8.6.5 Required Observation
	8.6.5.1 General
	8.6.5.2 Video
	8.6.5.3 Audio
	8.6.5.4 Subtitle

	8.7 Regular Playback of Chunked Content, non-aligned append
	8.7.1 Background
	8.7.2 Pre-condition
	8.7.3 Parameters and Variants
	8.7.4 Stimulus
	8.7.5 Required Observation
	8.7.5.1 General
	8.7.5.2 Video
	8.7.5.3 Audio
	8.7.5.4 Subtitle

	8.8 Playback over WAVE Baseline Splice Constraints
	8.8.1 Background
	8.8.2 Pre-conditions
	8.8.3 Parameters and Variants
	8.8.4 Stimulus
	8.8.5 Required Observations
	8.8.5.1 General
	8.8.5.2 Video

	8.9 Out-Of-Order Loading
	8.9.1 Background
	8.9.2 Pre-condition
	8.9.3 Parameters and Variants
	8.9.4 Stimulus
	8.9.5 Required Observation
	8.9.5.1 General
	8.9.5.2 Video
	8.9.5.3 Audio
	8.9.5.4 Subtitle

	8.10 Overlapping Fragments
	8.10.1 Background
	8.10.2 Pre-condition
	8.10.3 Parameters and Variants
	8.10.4 Stimulus
	8.10.5 Required Observation
	8.10.5.1 General
	8.10.5.2 Video
	8.10.5.3 Audio
	8.10.5.4 Subtitle

	8.11 Full Screen Playback of Switching Sets
	8.11.1 Background
	8.11.2 Pre-conditions
	8.11.3 Parameters and Variants
	8.11.4 Stimulus
	8.11.5 Required Observations
	8.11.5.1 General
	8.11.5.2 Video

	8.12 Playback of Encrypted Content
	8.12.1 Introduction
	8.12.2 Encrypted Content Use Cases
	8.12.2.1 Introduction
	8.12.2.2 Signaling Requirements and Capability Selection
	8.12.2.3 Playback Requirements

	8.12.3 Test Pre-condition
	8.12.4 Parameters and Variants
	8.12.5 Stimulus
	8.12.6 Expected Observation

	8.13 Restricted Splicing of Encrypted Content
	8.13.1 Conditions
	8.13.2 Stimulus and Observation

	8.14 Sequential Playback of Encrypted and Non-Encrypted Baseline Content
	8.14.1 Conditions
	8.14.2 Stimulus and Observation

	8.15 Source Buffer Re-Initialization
	8.16 Playback Other than Real Time
	8.16.1 Background

	8.17 Buffer Underrun and Recovery
	8.17.1 Background

	8.18 Truncated Playback and Restart
	8.18.1 Background

	8.19 Long Duration Playback
	8.19.1 Background

	8.20 Event Message Processing

	9 WAVE Content Playback Requirements
	9.1 Introduction
	9.2 Regular Playback of a CMAF Presentation
	9.2.1 Background
	9.2.2 Pre-condition
	9.2.3 Parameters and Variants
	9.2.4 Stimulus
	9.2.5 Expected Observation
	9.2.5.1 General

	9.3 Random Access of a WAVE Presentation
	9.3.1 Background
	9.3.2 Pre-condition
	9.3.3 Parameters and Variants
	9.3.4 Stimulus
	9.3.5 Expected Observation
	9.3.5.1 General

	9.4 Splicing of WAVE Program with Baseline Constraints
	9.4.1 Background
	9.4.2 Pre-condition
	9.4.3 Parameters and Variants
	9.4.4 Stimulus
	9.4.5 Expected Observation
	9.4.5.1 General

	9.5 Joint Playback of Video and Subtitles
	9.5.1 Background

	10 Video Capabilities and Requirements
	10.1 Introduction
	10.2 Media Profiles
	10.2.1 General
	10.2.2 Media Profile: CMAF AVC HD ('cfhd')
	10.2.2.1 Introduction
	10.2.2.2 Capability Discovery Options
	10.2.2.3 Source Buffer Initialization Requirements
	10.2.2.4 Content Options
	10.2.2.5 Playback Requirements

	10.2.3 Conditions
	10.2.4 Media Profile: CMAF HEVC HHD10 ('chh1')
	10.2.5 Media Profile: CMAF HEVC UHD10 ('cud1')
	10.2.6 Media Profile: CMAF HEVC HDR10 ('chd1')
	10.2.7 Media Profile: CMAF HEVC HLG10 ('clg1')

	10.3 Cross-Media Profile Video Splice Playback Requirements

	11 Audio Capabilities and Requirements
	11.1 General
	11.2 Media Profiles
	11.3 Cross-Media Profile Audio Splice Playback Requirements

	12 Subtitle Capabilities and Requirements
	12.1 Introduction

	13 Other Device Playback Requirements
	14 Device Core Profiles
	14.1 Introduction

	15 Device Extension Profiles
	15.1 Introduction

	16 Configurations
	16.1 Introduction
	16.2 Encryption
	16.2.1 Configuration Options
	16.2.2 Capability Discovery
	16.2.3 Playback Requirements

	Annex A: Device Capability Discovery (Informative)
	A.1. General
	A.2. Capability Discovery Options (not about signaling)
	A.2.1. Media Profile
	A.2.2. CMAF Header
	A.2.3. MIME Subparameters
	A.2.4. Media Capabilities
	A.2.5. Device Capability – Persistent Item Solution
	A.2.6. User Agent String
	A.2.7. WAVE Playback Capabilities
	A.2.8. Rendering and Display Capabilities

	A.3. Recommendations for Capability Discovery APIs

	Annex B: Relevant HTML 5 APIs (Informative)
	B.1 General
	B.2 Relevant Web Media APIs

	Word Bookmarks
	RFC791
	CMAF
	OLE_LINK13
	OLE_LINK8
	OLE_LINK7
	OLE_LINK2
	OLE_LINK17
	OLE_LINK20
	OLE_LINK14
	OLE_LINK18
	OLE_LINK19
	OLE_LINK15
	OLE_LINK16
	OLE_LINK5
	OLE_LINK6

