
CTA Specification

Fast and Readable Geographical Hashing

CTA-5009

December 2023

NOTICE

Consumer Technology Association (CTA)™ Standards, Bulletins and other technical publications
are designed to serve the public interest through eliminating misunderstandings between
manufacturers and purchasers, facilitating interchangeability and improvement of products, and
assisting the purchaser in selecting and obtaining with minimum delay the proper product for his
particular need. Existence of such Standards, Bulletins and other technical publications shall not
in any respect preclude any member or nonmember of the Consumer Technology Association
from manufacturing or selling products not conforming to such Standards, Bulletins or other
technical publications, nor shall the existence of such Standards, Bulletins and other technical
publications preclude their voluntary use by those other than Consumer Technology Association
members, whether the standard is to be used either domestically or internationally.

Standards, Bulletins and other technical publications are adopted by the Consumer Technology
Association in accordance with the American National Standards Institute (ANSI) patent policy.
By such action, the Consumer Technology Association does not assume any liability to any patent
owner, nor does it assume any obligation whatever to parties adopting the Standard, Bulletin or
other technical publication.

This document does not purport to address all safety problems associated with its use or all
applicable regulatory requirements. It is the responsibility of the user of this document to
establish appropriate safety and health practices and to determine the applicability of regulatory
limitations before its use.

Copyright © 2023 by the Consumer Technology Association (CTA)™. All rights reserved. This
document may not be reproduced, in whole or part, without written permission. Federal
copyright law prohibits unauthorized reproduction of this document by any means. Organizations
may obtain permission to reproduce a limited number of copies by entering into a license
agreement. Requests to reproduce text, data, charts, figures or other material should be made to
the Consumer Technology Association (CTA)™.

(Formulated under the cognizance of the CTA WAVE Project; for information please see
cta.tech/WAVE.)

 Published by
 CONSUMER TECHNOLOGY ASSOCIATION
 Technology & Standards Department
 www.cta.tech

 All rights reserved

http://www.cta.tech/

 CTA-5009

i

FOREWORD

This document was developed by the Web Application Video Ecosystem (WAVE) Project of the
Consumer Technology Association. The WAVE Project is a broad industry initiative of content,
technology, infrastructure and device companies, all working together towards commercial
Internet video interoperability based on industry standards.

 CTA-5009

ii

(This page intentionally left blank.)

 CTA-5009

iii

TABLE OF CONTENTS

1 Introduction .. 1

2 References .. 1

3 Compliance Notation .. 2

4 History ... 2

5 Terminology .. 2

6 Notation .. 3

7 Encoding .. 3

7.1 Lengths .. 4

7.1.1 Alternate Length Calculation ... 5

7.2 Codes ... 6

7.3 Binary Geohash ... 6

7.4 String ... 7

7.5 Encoding Common Regions .. 7

7.6 Example ... 8

8 Decoding ... 9

8.1 Binary Geohash ... 9

8.2 Codes ... 9

8.3 Values .. 10

8.4 Determining If a Point Lies in a Geohash Region .. 10

8.5 Example ... 11

8.6 Checking against the original values ... 12

9 Cautionary Example .. 12

10 Practical Example .. 13

11 Registrations ... 13

11.1 Concise Data Definition Language ... 13

12 CBOR Tag ... 14

12.1 Coordinate Reference System Wrapper .. 14

13 JWT Claim .. 14

 CTA-5009

iv

14 CWT Claim ... 15

15 Security Considerations .. 16

16 Privacy Considerations .. 16

A Encoding Test Vectors ... 17

B Decoding Test Vectors .. 18

 CTA-5009

v

(This page intentionally left blank.)

 CTA-5009

1

Fast and Readable Geographical Hashing

1 INTRODUCTION

Geographical hashes (“Geohashes”) are short strings of letters and digits that identify a specific region.
Longer Geohashes represent smaller regions and shorter Geohashes represent larger regions. In
particular, a Geohash that is the prefix of a second longer Geohash represents a region that encloses
the region represented by the second.

Geohashes are often used to identify locations by describing a region that encloses the location,
including any uncertainty associated with the location data. A location with very large uncertainty
would be represented with a short Geohash. A very long Geohash can represent a location very
precisely.

A Geohash always describes a region bounded by two lines of longitude and two lines of latitude. The
physical distance between lines of latitude decreases near the poles, so the amount of physical space
described by a Geohash of a given length will vary depending on its location. Geohashes that describe
regions near the equator will describe larger areas than Geohashes of the same length that describe
regions near the poles.

2 REFERENCES

The following documents are referenced in this standard. At the time of publication, the editions
indicated were valid. All standards are subject to revision, and parties to agreements based on this
standard are encouraged to investigate the possibility of applying the most recent editions of the
standards listed here.

[GEOHASH-WIKI] “Geohash” https://en.wikipedia.org/w/index.php?title=Geohash&oldid=1126143295
(accessed 2023-12-11).

[STD94] STD 94/IETF RFC 8949, Concise Binary Object Representation (CBOR), December 2020,
https://www.rfc-editor.org/info/std94.

[CBOR-IANA] IANA Concise Binary Object Representation (CBOR) Tags,
https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml.

[RFC7519] IETF RFC 7519, JSON Web Token (JWT), DOI 10.17487/RFC7519, May 2015, https://www.rfc-
editor.org/info/rfc7519.

[RFC8392] IETF RFC 8392, CBOR Web Token (CWT), DOI 10.17487/RFC8392, May 2018, https://www.rfc-
editor.org/info/rfc8392.

[RFC8610] IETF RFC 8610, Concise Data Definition Language (CDDL): A Notational Convention to Express
Concise Binary Object Representation (CBOR) and JSON Data Structures, DOI 10.17487/RFC8610, June
2019, https://www.rfc-editor.org/info/rfc8610.

[ISO 3166] ISO 3166, Codes for the representation of names of countries and their subdivisions,
International Organization for Standardization, https://www.iso.org/standards.html.

https://en.wikipedia.org/w/index.php?title=Geohash&oldid=1126143295
https://www.rfc-editor.org/info/std94
https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8610
https://www.iso.org/standards.html

 CTA-5009

2

[WGS84] US National Imagery and Mapping Agency, "Department of Defense (DoD) World Geodetic
System 1984 (WGS 84), Third Edition", NIMA TR8350.2, January 2000.

3 COMPLIANCE NOTATION

This document uses the following compliance terms:

MUST This word indicates specific provisions that are to be followed
strictly (no deviation is permitted).

MUST NOT This phrase indicates specific provisions that are absolutely
prohibited.

SHOULD This word indicates that a certain course of action is preferred
but not necessarily required.

SHOULD NOT This phrase means a certain possibility or course of action is
undesirable but not prohibited.

MAY This phrase indicates that a certain course of action is optional.

4 HISTORY

Geohash has historically been described in implementations as well as in a relatively comprehensive
article on Wikipedia [GEOHASH-WIKI]. These are excellent resources, but they can change over time
and are not generally suitable for building on in a consensus-based standards-making process.

This document exists to remediate that. It describes the practice as it exists at the time of writing and
provides general, straightforward algorithms for understanding and communicating with Geohashes. It
also exists to serve as a stable reference document for a few IANA registrations.

To that end, the algorithm documented in the “Technical description” section of [GEOHASH-WIKI] is
described here. This document does not describe all the usages, limitations, or geographic and
mathematical details for Geohashes because those are well described by the references.

The algorithm provided in [GEOHASH-WIKI] only decodes a Geohash, so the encoding routine has been
calculated as the reverse of decoding. However, since Geohashes of a given length may not be able to
describe exactly the region to encode, the algorithm must make some rounding choices. In every case,
it rounds so as to describe a region that contains the region to encode.

5 TERMINOLOGY

References for Geohashes often refer to a Geohash as a “location” with a given “precision”. This
framing is not precisely wrong, but it is imprecise. This document is careful to describe a Geohash as
describing a region, not a location. For some usages, a small enough region may effectively describe a
location, but this is an application-dependent decision.

This document uses “precision” to refer to the size of the region a given Geohash describes, given in
bits or degrees. More bits of precision results in smaller regions. These regions are cells aligned to the

 CTA-5009

3

Geohash grid, not positioned arbitrarily. As a result, when a location is encoded to a cell, the “error” is
not evenly distributed in all directions.

6 NOTATION

There is some mathematical notation below in the encoding and decoding. These are to be read in
accordance with usual mathematical practice.

⌊x⌋ is understood to mean the "floor of x". That is, the largest integer smaller than or equal to x.

⌈x⌉ is understood to mean the "ceiling of x". That is, the smallest integer larger than or equal to x.

For clarity, words are used instead of single letter variables. So latitude is one value named "latitude",
NOT a product of eight single letter values that simplifies to adeilt2u.

Likewise, a word in front of parentheses is understood to be a function, not multiplication. min(a,b) is a
function named "min" with arguments "a" and "b".

Interval notation is used herein. Square brackets [] represent inclusive endpoints and parentheses ()
represent exclusive endpoints. So the interval [1, 5) includes all the values between one and five, and
includes one, but does not include five.

When describing numbers, they are prefixed to indicate the base. Decimal (base 10) numbers have no
prefix. Hexadecimal numbers are prefixed with "0x" and binary numbers are prefixed with "0b". It is
often useful to add separators inside the number to make it easier to read. Commas (",") and
underscores ("_") in numbers have no meaning on their value but can be used to illustrate grouping or
improve readability.

The formulae herein define numbers and their relations exactly, but the examples round as is suitable
for display. When example numbers are not exact, this is indicated with the ≈ symbol. Implementations
that use floating point numbers to represent values may have rounding errors introduced, as usual.
Management of these rounding errors is out of the scope of this document.

7 ENCODING

The inputs to the Geohash encoding algorithm are:

● A Latitude and Longitude inside the region to be encoded; and

● Latitude and Longitude Ranges to be encoded.

Input Ranges: Latitudes MUST be in the range [-90°,90°). Longitudes MUST be in the range [-180°,
180°).

The resultant Geohash will represent a region on Earth that contains the point described by the
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒. The region will be no smaller (as measured by latitude and longitude) than
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 but may be much larger. This is because Geohash regions are
aligned to a series of grids, not arbitrary regions.

 CTA-5009

4

Each of these inputs is in the units of decimal degrees. The Ranges represent the size of the range to be
encoded. Because not all ranges are representable by Geohashes, the encoded Range may be larger
(but not smaller) than the input Ranges. An input shape with a very large difference between the
Latitude Range and the Longitude Range will experience the most variation when encoded. These
shapes are sometimes better broken up into multiple smaller regions that will encode with less error.

Alternately, Ranges can be efficiently described by specifying the desired final Geohash Length.

Geohashes are encoded in four steps:

1. Convert Latitude and Longitude Ranges to Latitude and Longitude Lengths.

2. Convert Latitude and Longitude to their respective Latitude and Longitude Codes.

3. Combine Latitude and Longitude codes into a single Binary Geohash.

4. Encode the Binary Geohash as a string.

7.1 Lengths

The easiest way to get latitude and longitude lengths is by determining them from the Geohash
Lengths:

latitude,
longitude

la
ti
tu

d
e
R

a
n

g
e

longitudeRange

 CTA-5009

5

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ⌊2.5 × 𝑔𝑒𝑜ℎ𝑎𝑠ℎ𝐿𝑒𝑛𝑔𝑡ℎ⌋

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ⌈2.5 × 𝑔𝑒𝑜ℎ𝑎𝑠ℎ𝐿𝑒𝑛𝑔𝑡ℎ⌉

Geohash Length can be determined by selecting the desired precision:

Geohash Length Lat Precision Long Precision km Precision Miles Precision

1 23° 23° 2500 km 1600 mi

2 2.8° 5.6° 630 km 390 mi

3 0.7° 0.7° 78 km 48 mi

4 0.087° 0.18° 20 km 12 mi

5 0.022° 0.022° 2.4 km 1.5 mi

6 0.0027° 0.0055° 0.61 km 0.38 mi

7 0.00068° 0.00068° 0.076 km 0.047 mi

8 0.000085° 0.00017° 0.019 km 0.012 mi

9 0.000021° 0.000021° 0.0023 km 0.0014 mi

These precision values have maximum size when one of the boundaries is at the equator. The
longitude error varies with the cosine of the longitude, so at 40°, the size will be about 70% of what is
listed. At 60°, it will be half. Given that at even Geohash Lengths, the decimal degrees size for longitude
is twice that of the latitude, this means that these Geohashes can often describe regions with smaller
sizes than the maximums listed above. Very near the poles, these errors can be quite small in the
longitude direction.

7.1.1 Alternate Length Calculation

If the desired Geohash Length is unknown, it can be calculated from Latitude and Longitude Ranges.

To convert Latitude and Longitude Ranges to Latitude and Longitude Lengths, start by calculating the
Initial Lengths:

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ⌊𝒍𝒐𝒈
2

(
180°

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒
)⌋

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ⌊𝒍𝒐𝒈
2

(
360°

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒
)⌋

The Lengths provide the length, in bits, of the Latitude and Longitude Codes. Not all lengths are
representable, however, in geocodes.

 CTA-5009

6

Reduce the Initial Latitude Length to the largest multiple of 2.5 rounded down smaller than it and
reduce the Initial Longitude Length to the largest multiple of 2.5 rounded up smaller than it:

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ2 = ⌊2.5 × ⌊
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ + 0.5

2.5
⌋⌋

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ2 = ⌈2.5 × ⌊
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ

2.5
⌋⌉

And then calculate the final ranges by reducing a larger length to match the other length if necessary:

latitudeLength = ⌊2.5 × 𝑚𝑖𝑛 (⌊
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ2 + 0.5

2.5
⌋ , ⌊

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ2

2.5
⌋)⌋

longitudeLength = ⌈2.5 × 𝑚𝑖𝑛 (⌊
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ2 + 0.5

2.5
⌋ , ⌊

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ2

2.5
⌋)⌉

7.2 Codes

To convert Latitude and Longitudes into their respective Codes, each is scaled into its range:

latitudeQstep =
180°

2𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ

 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑄𝑠𝑡𝑒𝑝 =
360°

2𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒 = ⌊
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 + 90°

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑄𝑠𝑡𝑒𝑝
⌋

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒 = ⌊
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 + 180°

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑄𝑠𝑡𝑒𝑝
⌋

7.3 Binary Geohash

In order to combine the Codes into a single Binary Geohash, their bits must be interleaved. Given a
function 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒(𝑎, 𝑏) that takes two numbers 𝑎 and 𝑏 and interleaves their bits such that the least
significant bit of the result will be the least significant bit of 𝑏, the interleaving will depend on whether
the lengths are equal or not equal.

If the Latitude Length is equal to the Longitude Length:

𝑏𝑖𝑛𝑎𝑟𝑦𝐺𝑒𝑜ℎ𝑎𝑠ℎ = 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒)

Otherwise:

𝑏𝑖𝑛𝑎𝑟𝑦𝐺𝑒𝑜ℎ𝑎𝑠ℎ = 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒)

 CTA-5009

7

7.4 String

To encode the Binary Geohash as a string, start by calculating the length, unless it was part of the initial
input as an alternative way to define the ranges:

𝑔𝑒𝑜ℎ𝑎𝑠ℎ𝐿𝑒𝑛𝑔𝑡ℎ = ⌊
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ

2.5
⌋

This Geohash Length will be the number of characters in the Geohash. The Geohash is almost identical
to a numeral using positional notation in base 32 and an alternate set of digits. The meanings of the
Geohash digits are given by the following table:

0 1 2 3 4 5 6 7 8 9 b c d e f g h j k m n p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note that the Geohash digits omit several symbols that could be easily confused with one another when
represented visually. Geohash encoders MUST use lowercase letters when encoding.

As a positional numeral in base 32, each symbol in position 𝑛, where position 0 is the least significant
digit, is given by the following:

𝑔𝑒𝑜ℎ𝑎𝑠ℎ(𝑛) = (𝑏𝑖𝑛𝑎𝑟𝑦𝐺𝑒𝑜ℎ𝑎𝑠ℎ >> 5 × 𝑛) & 0𝑥1𝐹

Where >> is the right-shift operator and & is the bitwise "and" operator. And 0x1F is the
hexadecimal value representing 31.

Geohashes are almost positional numerals, but they carry one additional piece of information that true
positional numerals do not: length. While positional numerals that differ only by leading zeroes are not
different, Geohashes that differ by leading zeroes are different. The algorithms to produce positional
numerals and Geohashes are the same as long as they process exactly Geohash Length number of digits,
even if the leading digits are zero.

7.5 Encoding Common Regions

In order to encode a Geohash that describes a region guaranteed to enclose a nonzero area described
by two bounding latitudes 𝑦1 and 𝑦2 and two bounding longitudes 𝑥1 and 𝑥2, where the first in each
pair is smaller than the second, do this:

1. Encode a region enclosing latitude 𝑦1 and longitude 𝑥1 with the desired degree of precision.

2. Do likewise for a region enclosing latitude 𝑦2 and 𝑥2.

3. Take the common prefix of the two Geohashes. That is, take the longest prefix that is the same

for both Geohashes.

 CTA-5009

8

That common prefix will enclose both regions. It may, however, be drastically larger than that
described by the initial bounds. In a worst-case scenario, the common prefix may be zero length, which
describes the entire globe.

If, in step 3, the common prefix is the whole of both Geohashes, it means that both points lie within
the same Geohash region to the degree of precision specified in step 1. If the most precise Geohash
that describes the region is required, repeat the steps with a larger degree of precision until the
Geohashes differ.

When attempting to encode a point with a known error, this can pose a challenge. Given latitude and
longitude with known error for each value, the geohash that encloses that region may be untenably
large. How this is handled is application-specific, but encoders should be aware that the error values
for Geohashes are not evenly distributed and multiple more-precise Geohashes may be preferred in
order to usefully describe the region.

7.6 Example

Consider a location to encode: 32.449247755342455° latitude, -99.73357454336144° longitude; and a
precision that mustn't be worse than 0.0001°.

The simplest method is to look up on the chart above and observe that a length of 9 is the first value
that does not exceed this in either dimension.

Plug in the numbers:

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ⌊2.5 × 9⌋ = 22

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ⌈2.5 × 9⌉ = 23

 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑄𝑠𝑡𝑒𝑝 =
180°

222 ≈ 0.00004291534423828125°

 longitudeQstep =
360°

223 ≈ 0.00004291534423828125°

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒 = ⌊
32.449247755342455°+90°

0.00004291534423828125°
⌋ = 2,853,274 = 0𝑥2𝐵899𝐴 ; binary:

0b0010_1011_1000_1001_1001_1010

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒 = ⌊
−99.73357454336144°+180°

0.00004291534423828125°
⌋ = 1,870,343 = 0𝑥1𝐶8𝐴07; binary:

0b0001_1100_1000_1010_0000_0111

Interleave those bits to get:

(lat) 0b0 0 1 0 _1 0 1 1 _1 0 0 0 _1 0 0 1 _1 0 0 1 _1 0 1 0

(long) 0b 0 0 0 1_ 1 1 0 0_ 1 0 0 0_ 1 0 1 0_ 0 0 0 0_ 0 1 1 1

(both) 0b00001001_11011010_11000000_11000110_10000010_10011101

 CTA-5009

9

Split into 9 sets of 5 instead:

 0b01001_11011_01011_00000_01100_01101_00000_10100_11101

Convert to positional values:

 9, 27, 11, 0, 12, 13, 0, 20, 29

Convert to final string values:

 9vc0de0nx

This encoding specifies a Geohash cell of size 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 × 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 to represent a
region enclosing the desired point 32.449247755342455° latitude, -99.73357454336144° longitude.
The region’s 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 were selected to be smaller than the required
precision of 0.0001° (or roughly 10 m). We were able to encode with bitstrings of length
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ as an intermediate step, which resulted in a Geohash string of
length 9 characters after encoding was completed.

8 DECODING

The input to the Geohash decoding algorithm is just a Geohash string to be decoded.

There are three steps for decoding Geohashes:

1. Decode the string into a Binary Geohash.
2. Split the Binary Geohash into the Latitude and Longitude Codes and Lengths.
3. Determine the Latitude and Longitude Ranges and values.

Every Geohash describes a specific region.

8.1 Binary Geohash

Convert the Geohash to a number using the table above and interpreting it as a positional numeral:

binaryGeohash = ∑ ungeohash(n) × 32𝑛

𝑔𝑒𝑜ℎ𝑎𝑠ℎ𝐿𝑒𝑛𝑔𝑡ℎ

𝑛=0

Geohash decoders SHOULD interpret upper case letters as though they were lower case. A Geohash with
characters not on the table is invalid and MUST NOT be processed.

8.2 Codes

The Latitude and Longitude Codes are extracted from the Geohash Value by taking alternating bits. When
the number of characters in the Geohash String is even, the number of bits in the Latitude and Longitude
Codes will both be the number of characters in the Geohash String multiplied by 2.5. In this case, the
latitude is formed from the even bits in the Geohash Value, the longitude the odd, starting from position
zero in the last bit of the value.

 CTA-5009

10

When the number of characters in the Geohash String is odd, the number of bits in the latitude is the
number of characters in the Geohash Value, multiplied by 2.5, then rounded down by subtracting 0.5.
The number of bits in the longitude is the number of characters in the Geohash Value, multiplied by 2.5,
then rounded up by adding 0.5. In this case, the latitude is formed from the odd bits and the longitude
the even bits, starting from position zero in the last bit of the value.

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ⌊𝑔𝑒𝑜ℎ𝑎𝑠ℎ𝐿𝑒𝑛𝑔𝑡ℎ × 2.5⌋

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ⌈𝑔𝑒𝑜ℎ𝑎𝑠ℎ𝐿𝑒𝑛𝑔𝑡ℎ × 2.5⌉

If the Latitude Length is equal to the Longitude Length (which is to say, if the Geohash Length is even):

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒 = 𝑑𝑒𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒(𝑏𝑖𝑛𝑎𝑟𝑦𝐺𝑒𝑜ℎ𝑎𝑠ℎ)

Otherwise:

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒 = 𝑑𝑒𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒(𝑏𝑖𝑛𝑎𝑟𝑦𝐺𝑒𝑜ℎ𝑎𝑠ℎ)

8.3 Values

The Latitude and Longitude Codes define values and ranges for latitudes and longitudes.

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 =
180°

2𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 × 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒) − 90°

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 =
360°

2𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = (𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 × 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒) − 180°

The Geohash represents the region on earth bounded the lines of latitude 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 and 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 +
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 and the lines of longitude 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 + 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒.

8.4 Determining If a Point Lies in a Geohash Region

To determine if a point lies in a given Geohash Region:

1. Encode the point with the same Geohash Length as the Region. If the point is already encoded

as a Geohash, this is accomplished by truncating it to the length of the region. If the point is

encoded with lower Geohash Length than the Region, it will be impossible to determine if it lies

within the Region because its error is higher than the size of the Region.

2. Check to see if they are identical, using a case-insensitive comparison.

If they are the same string, the point lies within the Geohash Region.

 CTA-5009

11

8.5 Example

Consider the string "9vc0de0nx" as a Geohash to be decoded. (This is the example given above for
encoding.)

First, the length is noted: 9.

Then, it is converted using the table to positional values:

 9, 27, 11, 0, 12, 13, 0, 20, 29

These are encoded positionally:

 9 × 328 + 27 × 327 + 11 × 326 + 0 × 325 + 12 × 324 + 13 × 323 + 0 × 322 + 20 × 321 +
29 × 320

= 10,835,141,755,549 = 0𝑥009𝐷_𝐴𝐶0𝐶_829𝐷

That value, in binary, is:
 (both) 0b00001001_11011010_11000000_11000110_10000010_10011101

 (lat) 0b0 0 1 0 _1 0 1 1 _1 0 0 0 _1 0 0 1 _1 0 0 1 _1 0 1 0

 (long) 0b 0 0 0 1_ 1 1 0 0_ 1 0 0 0_ 1 0 1 0_ 0 0 0 0_ 0 1 1 1

Deinterleave that into two parts:

 0b0010_1011_1000_1001_1001_1010 = 2853274

0b0001_1100_1000_1010_0000_0111 = 1870343

Since the length is odd, the first number is the Latitude Code and the second is the Longitude Code.

Then, we determine the code lengths:

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ⌊9 × 2.5⌋ = 22

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ = ⌈9 × 2.5⌉ = 23

And the ranges:

 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 =
180°

222 ≈ 0.00004291534423828125°

 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 =
360°

223 ≈ 0.00004291534423828125°

And finally, the values:

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = (0.00004291534423828125 × 2853274) − 90° ≈ 32.4492359161376953125

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = (0.00004291534423828125 × 1870343) − 180° ≈ 99.73358631134033203125

Adding the ranges to these values, we can determine that the range covers the area between latitudes
32.4492359161376953125° and 32.44927883148193359375° and between longitudes -
99.73358631134033203125° and -99.73354339599609375°.

 CTA-5009

12

8.6 Checking against the original values

The original point encoded was 32.449247755342455° latitude, -99.73357454336144° longitude. One
can validate that:

32.4492359161376953125 < 32.449247755342455 < 32.44927883148193359375

and:

 -99.73358631134033203125 < -99.73357454336144 < -99.73354339599609375

(The highlighted portion shows where the values begin to differ.)

This decoding confirms that the string "9vc0de0nx" represents the encoding of a Geohash cell of size
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 × 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 that identifies a region enclosing the original point, and that the
region’s 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑛𝑔𝑒 are smaller than the required precision of 0.0001° (or
roughly 10 m), and that we were able to do it with bitstrings of length 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ and
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐿𝑒𝑛𝑔𝑡ℎ, which after encoding resulted in a Geohash string of length 9 characters.

9 CAUTIONARY EXAMPLE

Consider the situation if a single Geohash is used to describe the region within 44.999° latitude, -
90.001° longitude and 45.001° latitude, -89.999° longitude. This could, for example, be the result of a
subject very near the 45° latitude, -90° longitude with a thousandth of a degree error on the sensor in
both directions.

To find the common region, we encode both and take the prefix. We start with a prefix length of 5,
since the size of the region is about 0.02°. (The starting precision does not ultimately matter. If it is
insufficient, the regions will match and you can try again with a larger value, per the algorithm.) We
start by encoding both points:

44.999° latitude, -90.001° longitude:

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒 = ⌊
44.999°+90°

0.043945°
⌋ = 3071 = 0𝑥𝐵𝐹𝐹 ; binary: 0b1011_1111_1111

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒 = ⌊
−90.001°+180°

0.043945°
⌋ = 2047 = 0𝑥7𝐹𝐹; binary: 0b0_0111_1111_1111

Interleave and group by fives to get:

0b01001_11111_11111_11111_11111

Encode that to get:

 9zzzz

45.001° latitude, -89.999° longitude:

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒 = ⌊
45.001°+90°

0.043945°
⌋ = 3072 = 0𝑥𝐶00 ; binary: 0b1100_0000_0000

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐶𝑜𝑑𝑒 = ⌊
−89.999°+180°

0.043945°
⌋ = 2048 = 0𝑥800; binary: 0b0_1000_0000_0000

 CTA-5009

13

Interleave and group by fives to get:

0b01110_00000_00000_00000_00000

Encode that to get:

f0000

Then, we find the common prefix of "9zzzz" and "f0000", which is an empty string. A zero-length
Geohash describes the entire planet, so the most precise Geohash that describes the given region
encloses the whole planet. This is not particularly useful, so care must be taken when using direct error
ranges and specific values.

10 PRACTICAL EXAMPLE

Consider a practical situation in Paris. If the goal is to describe Paris with a single Geohash, the smallest
Geohash that covers the whole of Paris is "u09". However, this zone is very large, encompassing all of
the Greater Paris Metropolis and much of the countryside, all the way down to Orléans.

Let's suppose that Paris is a rectangle bounded by the points 48.835707° latitude, 2.284042° longitude
and 48.898580° latitude, 2.391896° longitude. It is not, but it is a useful simplification. With nine
characters, the former encodes to "u09tgfr0w" and the latter to "u09wnmtwz". The shortest common
prefix is "u09", as described, which overstates the area quite drastically.

If, however, you use an array of more precise Geohashes, you can more closely cover the area:

 ["u09tg","u09tu","u09tv","u09ty","u09w5",u09wh","u09wj","u09wn"]

Calculating these fields is outside the scope of this document, but it is a useful demonstration of how a
few more precise Geohashes are sometimes a more useful way to accurately encode a large area. This
is especially true when the area is not a rectangle.

11 REGISTRATIONS

This document requests a number of registrations of the Internet Assigned Numbers Authority, as
described in the sections below.

11.1 Concise Data Definition Language

Some registrations have Concise Data Definition Language (CDDL) [RFC8610] definitions associated. As
a convention, specifications using CDDL define a single definition first, in order to assist machine
processors. It is recommended that any such processors process each of the following sections as
though they were separate CDDL documents. However, for convenience, the following CDDL is
provided first:

geohash-registrations = geohash / crsw / cwt-claims

 CTA-5009

14

12 CBOR TAG

The Geohash CBOR tag [STD94] identifies a Geohash String.

Tag: 105

Data Item: text string or array

Semantics: Geohash String

Point of Contact: Consumer Technology Association

When the data item is a text string, it is a Geohash that represents a region with the semantics above. A
sufficiently small region can represent a location for some applications. When the data item is an array,
it MUST be an array of text strings that are Geohashes. An array of Geohashes represents a region that
is the union of the regions represented by each Geohash. The regions may be non-adjacent and/or
overlapping.

A Geohash CBOR tag is described by the CDDL [RFC8610]:

geohash = #6.105(tstr) / 6.105([* tstr])

Some application-specific purposes may allow Geohash strings and arrays to be wrapped with
Coordinate Reference System Wrappers.

12.1 Coordinate Reference System (CRS) Wrapper

The CRS CBOR tag identifies a Coordinate Reference System that wraps another data object.

Tag: 279

Data Item: array

Semantics: Coordinate Reference System Wrapper

Point of Contact: Consumer Technology Association

The data item is an array that MUST have exactly two elements. The first element MUST contain a data
item that represents a Coordinate Reference System (CRS). The second element is a data item that is the
element being wrapped. The meaning of this tag is application-specific but SHOULD be the same as the
meaning of the second data item, interpreted in the CRS of the first. If a tag is implied by the context of
the wrapper, the same implication SHOULD apply to the second data item.

When the first data item is not tagged, it MUST be interpreted as though it were tagged with tag 104
[CBOR-IANA] (Geographic Coordinate Reference System WKT or EPSG number).

A CRS Wrapper tag is described by the CDDL:

crsw = #6.279([crs: any, data: any])

In most cases, the context of the wrapper will constrain the data object.

13 JWT CLAIM

Claim Name: geohash

Claim Description: Geohash String or Array

Change Controller: Consumer Technology Association

 CTA-5009

15

The "geohash" claim identifies a geographical region associated with the subject of the JSON Web Token
[RFC7519]. The processing of this claim is generally application-specific. Sufficiently small regions can be
used to represent locations for some applications. The "geohash" claim value is either an array of case-
sensitive strings or a single case-sensitive string. A single string is a Geohash String and represents the
region described by the Geohash.

An array of Geohashes represents the union of the regions described by the Geohashes. These regions
may be non-adjacent and/or overlapping. A list of sufficiently small regions may be used to describe a
list of locations.

Unless the application-specific context defines otherwise, the regions described by a Geohash claim
MUST be interpreted in the WGS84 coordinate system as defined in [WGS84].

14 CWT CLAIM

Claim Name: geohash

Claim Description: Geohash String

JWT Claim Name: geohash

Claim Key: 282

Claim Value Type(s): text string or array

Change Controller: Consumer Technology Association

The "geohash" CBOR Web Token [RFC8392] claim has the same meaning and processing rules as the
"geohash" JWT claim, except that its type is a CBOR text string or array. The Claim Key 282 is used to
identify this claim. The value of this claim MUST NOT be prefixed by a Geohash String tag (105). The
semantics of this claim already require that the value be interpreted as a Geohash String and so a tag
prefix would consume space for no benefit.

This claim value MAY be prefixed with a CRS Wrapper tag (279) in accordance with the semantics defined
by that tag. If a CRS Wrapper is used, it MUST be tagged so that parsers can differentiate an array that is
a CRS Wrapper from an array of Geohash strings. Likewise, each Geohash string in an array MAY be
prefixed with a CRS Wrapper tag.

An application that uses a "geohash" claim MUST specify a default Coordinate Reference System that
applies when no CRS Wrapper is present, or it MUST require a CRS Wrapper. It MUST specify whether a
CRS Wrapper that describes a CRS that is already described by the context (either explicitly or as a
default) is permitted, prohibited, or required. It SHOULD prohibit it unless application-specific
requirements make that impossible or undesirable.

The value of a "geohash" claim in a CWT is described by the CDDL:

cwt-claims = {

 ? geohash-label => geohash-value

 * label => any

}

label = int / tstr

geohash-label = 282

geohash-value = untagged-geohash-value

 CTA-5009

16

 / #6.279([crsw-system, untagged-geohash-value])

untagged-geohash-value = geohash-string

 / [* geohash-string]

geohash-string = tstr

 / #6.279([crsw-system, tstr])

crsw-system = any ; interpreted as tag 104 when untagged

15 SECURITY CONSIDERATIONS

A Geohash is nothing more or less than a description of a specific region. As such, any security
considerations exist entirely within the context in which it is used. When a Geohash is used as a basis
for access control, the security of the access control mechanism will only be as secure as the Geohash
itself.

Geohashes used for sensitive purposes MUST be conveyed securely. What that means will depend on
the context; implementers should refer to the security considerations of the related protocols for this.

Likewise, Geohashes MUST be sufficiently accurate for the purposes to which they are set. When they
are based on sensors with accuracy limits, these limits and errors will contribute to the error in the
ultimate usage of the Geohash. Providing sets of Geohashes that encompass the entire error of the
sensor will often be a useful way to accommodate this.

Special care should be taken when using Geohashes to determine or describe political or civic
boundaries. Adequately describing these regions is difficult without using large sets of Geohashes,
because they tend to have highly irregular borders. A protocol using a Geohash for this purpose may
also convey the intended political or civic region using other protocols for that purpose, such as [ISO
3166] country and region codes.

16 PRIVACY CONSIDERATIONS

Geohashes describe locations. To the extent that they describe people, places, and other entities with
privacy interests, they MUST be kept confidential by use of encryption. Likewise, a protocol MUST use
the lowest suitable precision.

Exactly how these values are protected and what constitutes suitable precision will depend on context.

Geohashes can gain considerable precision when an adversary can observe them over time as well.
Sensor jitter or movement of the subject can result in Geohash changes that allow adversaries to
observe boundary changes and deduce much more accurately where in the Geohash the subject is.
Geohashes based on sensors or moving subjects MUST be conveyed using suitable encryption when
privacy interests are at risk.

 CTA-5009

17

Annex A
Informative

A ENCODING TEST VECTORS

Given the following locations and lengths, these are the encoded Geohash Strings:

Latitude Longitude Length Geohash

0 0 9 s00000000

-89.99 -179.99 4 0000

48.856667 2.352222 9 u09tvw0fd

32.449247755342455 -99.73357454336144 9 9vc0de0nx

89 179 4 zzz6

32.449247755342455 -99.73357454336144 5 9vc0d

24.668889 102.977222 4 wk3h

8.529722 77.249722 3 t9w

-18.286111 147.7 6 rk9pbz

48.9 22.183333 4 u2xy

-9.33333 -77.4 5 6q2fy

4 -56.5 7 d8xyf21

9.119355 -79.731240 8 d1x7csjk

17.073 -119.114 5 97531

21.972 69.2571 4 tech

-72.0778 123.2274 7 neptune

 CTA-5009

18

Annex B
Informative

B DECODING TEST VECTORS

Given the following Geohash Strings, these are the regions they encode, to six decimal
places:

Geohash Latitude Longitude Latitude Range Longitude Range

s00000000 0 0 0.000043 0.000043

0000 -90 -180 0.175781 0.351563

u09tvw0fd 48.856630 2.352190 0.000043 0.000043

9vc0de0nx 32.449236 -99.733586 0.000043 0.000043

zzz6 88.945313 178.945313 0.175781 0.351563

9vc0d 32.431641 -99.755859 0.043945 0.043945

wk3h 24.609375 102.65625 0.175781 0.351563

t9w 8.4375 75.9375 1.40625 1.40625

rk9pbz -18.286743 147.689209 0.005493 0.010986

u2xy 48.867188 22.148438 0.175781 0.351563

6q2fy -9.360352 -77.431641 0.043945 0.043945

d8xyf21 3.999023 -56.501312 0.001373 0.001373

d1x7csjk 9.119339 -79.731560 0.000172 0.000343

97531 17.050781 -119.135742 0.043945 0.043945

tech 21.796875 68.90625 0.175781 0.351563

neptune -72.078552 123.226776 0.001373 0.001373

Consumer Technology Association Document Improvement Proposal

If in the review or use of this document a potential change is made evident for safety, health or
technical reasons, please email your reason/rationale for the recommended change to
standards@CTA.tech.

Consumer Technology Association
Technology & Standards Department

1919 S Eads Street, Arlington, VA 22202
FAX: (703) 907-7693 standards@CTA.tech

mailto:standards@CTA.tech

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5

